首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 136 毫秒
1.
采用FLUENT软件中的多参考坐标系模型(MRF)对螺旋桨的敞水性能进行模拟,并将模拟结果与试验值进行比较,然后通过ANSYS Workbench中的流固耦合技术将FLUENT计算所得的桨叶表面压力加载到ANSYS中桨叶的有限元模型中进行静力分析计算,得到的桨叶应力结果与理论分析相吻合.  相似文献   

2.
风场中长单索结构流固耦合效应的动力学分析   总被引:1,自引:0,他引:1  
本文介绍了长单索结构的风致振动现象及传统单索动力计算方法,分析了进行流固耦合计算的必要性.详细阐述了流固耦合的基本理论和方法,并介绍了有限元软件ANSYS的流固耦合计算流程.根据两种工况下的流固耦合算例分析,给出了长单索结构跨中节点的位移、应力以及索表面风压等物理量的时程曲线,通过对不同工况以及不同流场模型的模拟和分析比较,探讨了基于流固耦合分析的长单索结构风致振动响应的特点,对长单索结构的风致振动分析和设计具有参考意义.  相似文献   

3.
将多相流领域内的虚拟区域法引入到流固耦合问题的分析中,将固体视为应变率为 零的虚拟流体,对流体和虚拟流体均以速度和压强作为基本变量,采用Navier-Stokes方 程作为控制方程,同时求解流体域和虚拟流体域, 得到整个计算域的流场分布,应用分布式拉 格朗日乘子法在虚拟流体域上施加刚体约束, 以保持虚拟流体的刚体外形和运动形式,最终建 立一种流固耦合模型及其数值求解方法. 通过对粒子流问题和流固耦合问题进行数值模拟, 验证了此模型的正确性和求解大变形/运动流固耦合问题的有效性.  相似文献   

4.
本文以多片平行悬壁板为模型,对平行结构流固耦合振动特性问题从理论上进行了探讨,导出了便于分析计算的理论表达式,并进行了计算与实验验证。结果说明,分析方法正确,对于分析实际水工结构的完全流固耦合问题具有实现意义。  相似文献   

5.
薄膜结构流固耦合的CFD数值模拟研究   总被引:3,自引:1,他引:2  
基于弱耦合分区求解策略,在CompaqVisualFortran6.5环境下搭建了薄膜结构三维流固耦合效应的CFD数值模拟平台。程序采用模块化编程思想,主要包含几何建模、流体分析、结构分析和数据交换四个模块。其中几何建模模块采用自行编制的膜结构找形分析程序,流体分析模块采用经过二次开发的计算流体力学软件FLUENT6.0,结构分析模块采用自行编制的膜结构动力分析程序MDLFX;在数据交换模块中,编制了基于薄板样条法的插值计算程序,以实现流固交界面上不同区域网格间的数据传递问题,编制了基于代数法和迭代法的动网格变形程序,以实现流固耦合运算中的动网格更新。基于该软件平台,对单向柔性屋盖和鞍形膜结构屋盖进行了流固耦合数值模拟,验证了方法的有效性。  相似文献   

6.
本文以多片平行悬臂板为模型,对平行结构流固耦合振动特性问题从理论上进行了探讨,导出了便于分析计算的理论表达式,并进行了计算与实验验证。结果说明,分析方法正确,对于分析实际水工结构的完全流固耦合问题具有现实意义。  相似文献   

7.
以高空长航时大展弦比太阳能无人机机翼为研究对象,针对分布式电驱螺旋桨滑流和大展弦比机翼之间耦合的复杂气动干涉问题,采用滑移网格方法、动网格技术、SST k-ω RANS湍流模型和CFD/CSD (Computational Fluid Dynamics/Computational Structural Dynamics)双向流固耦合技术,研究了螺旋桨不同转速、布局方式和气动阻尼对机翼气动弹性响应的影响。数值计算结果表明,螺旋桨滑流会改变机翼表面的压力分布;螺旋桨流场对机翼的扰动频率接近机翼的结构固有频率时,机翼会发生共振;螺旋桨的位置越靠近翼尖,或螺旋桨的数量增多,都将增加机翼气动弹性响应的幅值。  相似文献   

8.
孙芳锦  徐中豪  张敏 《应用力学学报》2020,(2):846-850,I0027
针对强耦合方法求解风与柔性结构流固耦合作用时,大量计算资源都耗费在对强耦合方程求解中这一弊端,本文研究了强耦合方程的预处理求解方法。在风与柔性结构流固耦合作用的强耦合整体方程的基础上,将时空离散和线性化后的类似结构方程看成是鞍点问题,首先推导得到了类似结构方程的预处理矩阵;再基于此推导出了强耦合整体方程的预处理矩阵。首先采用预处理方法对经典二维流固耦合问题进行了计算,验证了提出的预处理矩阵的正确性;然后对风与三维膜结构的流固耦合作用进行了分析,评估了所提出预处理方法的相关计算参数。计算结果表明,所提出的预处理方法可使强耦合整体方程的求解在计算精度和计算效率上都得到较大提升,证明本文提出的预处理方法适用于风与柔性结构的流固耦合分析。  相似文献   

9.
输流管道动力有限元建模及实验研究   总被引:2,自引:0,他引:2  
在输流管道系统中由结构-流体相互耦合作用导致的管道振动对工业生产的安全性、经济性具有重要影响。工程中常用有限元中的管单元建立管道动力学模型,用附加质量法或顺序耦合方法进行输流管道系统的动力学分析,这种建模和分析方法可能会造成管道中结构-流体相互耦合效应的缺失。本文搭建了输流管道系统的实验平台,分别在管道无水和充水两种状态下进行管道系统模态实验,并将实验结果分别与所建立的无水管道有限元模型和充水管道流固耦合模型分析结果进行了对比,验证了壳单元及实体单元管道动力学模型的合理性。通过实验和数值分析研究其动力特性发现:壳单元动力学模型更合理准确,管道系统由于流固耦合作用的影响产生了新的振动形态;附加质量法分析结果缺失了系统的某些低阶模态,表明了输流管道系统流固直接耦合动力学建模的必要性。  相似文献   

10.
考虑流固耦合作用的充气膜结构风压分布研究   总被引:2,自引:2,他引:0  
充气膜结构是典型的风敏感型柔性结构,风荷载经常起关键的控制作用。本文利用ANSYS14.5程序中的workbench平台,考虑流固耦合作用,研究矩形平面气承式充气膜结构的风压系数分布。其中,选用基于雷诺时均模拟法的RNGk-ε湍流模型进行风场模拟,采用弱耦合分析方法模拟流固耦合风荷载效应。分析的参数选择风向角、结构内压、矢跨比和平面长宽比。针对矢跨比分别为1/4,1/3和1/2,长宽比分别为5/3,2/1和3/1的柔性充气膜结构模型,计算不同内压及不同风向角作用下的结构响应。结果表明,考虑流固耦合作用时,充气膜结构的风压体型系数比不考虑流固耦合作用的刚性模型明显偏大,其影响因子在1.25~1.5之间;充气膜结构的风压系数分布受风向角、内压、长宽比及矢跨比的影响较大。  相似文献   

11.
随岁寒  晋会杰  李成 《力学季刊》2020,41(3):562-570
基于物理中面概念和经典薄板理论,应用有限元法研究了机械工程中的二维传输结构作轴向运动时的面外自由振动特性.根据实际工程结构特点及设计要点,考虑受双向预张应力作用的传输薄板结构模型,由哈密顿原理出发严格导出了结构的有限元动力学方程,得到了体现轴向传输结构特性的陀螺矩阵.该矩阵具有反对称结构,这与加权余量法所得的陀螺矩阵结构不同.采用3 节点三角形单元离散求解域,且单元不受轴向运动影响,给出了单元密度对计算结果精度的影响.分析了传输结构预张应力和轴向速度与自由振动固有频率的关系;考察了不同结构的陀螺矩阵对数值结果的影响.将部分结果与ANSYS 软件模拟对比,显示出良好的一致性,证明了本文方法的有效性.研究结果可为典型传输带等结构的振动控制提供参考,建模方法可为ANSYS等计算软件添加轴向运动结构新模块提供理论依据.  相似文献   

12.
船用复合材料螺旋桨研究进展   总被引:3,自引:0,他引:3  
张帅  朱锡  孙海涛  熊鹰  侯海量 《力学进展》2012,42(5):620-633
复合材料具有比强度高,阻尼性能好及可调整纤维铺层以控制结构变形等优点.复合材料应用于螺旋桨将改善螺旋桨的推进性能和振动特性.通过对国内外复合材料螺旋桨研究成果的回顾、总结和归纳,得出了传统的算法已不满足复合材料螺旋桨的设计和预报要求,复合材料螺旋桨的设计和预报算法需考虑桨叶变形引起的空间流场变化的结论.分析了可借助纤维增强材料所具有的弯扭耦合特性,调整桨叶纤维材料铺层和桨叶结构形式来提高螺旋桨推进效率的规律性.总结了复合材料螺旋桨研究中的关键技术和复合材料螺旋桨设计流程,并指出了复合材料螺旋桨未来研究的趋势.   相似文献   

13.
树木在风中摇曳是一个流固耦合问题,但树的结构复杂,无法直接用已有的流固耦合数值方法来模拟.本文提出一种基于虚拟耦合面的流固耦合方法,该方法用一个虚拟的连续曲面把树冠包裹起来,在这个曲面上建立流固耦合关系,并将虚拟曲面上计算得到的风荷载作为树木结构的外力进行加载.虚拟耦合面本身不妨碍树木枝条的运动,且能避免在每个枝条、树...  相似文献   

14.
纤维增强复合材料弹性性能预测的域分解方法及应用   总被引:1,自引:0,他引:1  
李明  陈秀华 《应用力学学报》2012,29(3):235-241,349
提出了新的有限元建模方法,即域分解方法,用于预测纤维增强复合材料单向带T300/BSL914C(环氧树脂)和AS4/3501-6(环氧树脂)的弹性性能。域分解方法基于区域叠合技术,分别建立单胞的整体域与纤维域模型用于代替传统有限元建模方法中单胞的基体域与纤维域模型。整体域是真实基体体积与纤维体积的叠加,两区域网格独立划分,互不影响。采用MSC.Nastran中的多节点约束Explicit单元,在整体域与纤维域节点之间建立位移连接属性模拟单胞基体域与纤维域之间的位移约束关系,从而实现两区域的耦合计算。计算结果表明:域分解方法单胞模型纤维增强方向弹性模量Ez预测值与试验值误差在7%以内,其余弹性常数也都与试验值吻合较好。域分解方法不仅可以大大简化纤维增强复合材料的细观力学建模,而且可以准确地预测纤维增强复合材料的弹性性能。  相似文献   

15.
Marine propellers are designed to work for a particular operating condition. However, a propeller often requires to operate at different off-design conditions, when its hydrodynamic efficiency drops. In this paper, a comprehensive numerical study is presented on the use of bend–twist coupling of composite propeller blades for improving their hydrodynamic efficiency at off-design conditions. The analysis is carried out on a full-scale propeller of diameter 4.2 m, considering the complete viscous turbulent flow, as the loading and deformation of model propellers that have been typically studied in literature for this purpose cannot be extrapolated to a full-scale prototype propeller. The open water performance is estimated using the finite volume method employing the pressure based RANS equation for the steady, incompressible, turbulent flow. The deformation analysis is done using the finite element method based on the first order shear deformation theory for composite laminates. The fluid–structure interaction is incorporated in an iterative manner. The effect of laminate configurations on the maximum twist achieved in the blade is studied for four different composite materials. The numerical study reveals that, within the limits of material safety, the twist generated in the deformed propeller using commonly used composite materials is inadequate to create any noticeable change in the hydrodynamic efficiency. When the material failure is ignored, however, it is possible to generate sufficient deformation and twist that can cause appreciable improvement in the hydrodynamic performance.  相似文献   

16.
Advanced composite propellers, turbines, and jet engines have become increasingly popular in part because of their ability to provide improved performance over traditional metallic rotors through exploitation of the intrinsic bend–twist coupling characteristics of anisotropic composite materials. While these performance improvements can be significant from a conceptual perspective, the load-dependent deformation responses of adaptive blades make the design of these structures highly non-trivial. Hence, it is necessary to understand and predict the dependence of the deformations on the geometry, material constitution, and fluid–structure interaction responses across the entire range of expected loading conditions.The objective of this work is to develop a probabilistic performance-based design and analysis methodology for flexible composite propulsors. To demonstrate the method, it is applied for the design and analysis of two (rigid) metallic and (flexible) composite propellers for a twin-shafted naval combatant craft. The probabilistic operational space is developed by considering the variation of vessel thrust requirements as a function of the vessel speed and wave conditions along with the probabilistic speed profiles. The performance of the metallic and composite propellers are compared and discussed. The implications of load-dependent deformations of the flexible composite propeller on the operating conditions and the resulting performance with respect to propeller efficiency, power demand, and fluid cavitation are presented for both spatially uniform and varying flows. While the proposed framework is demonstrated for marine propellers, the methodology can be generally applied for any marine, aerospace, or wind energy structure that must operate in a wide range of loading conditions over its expected life.  相似文献   

17.
There is an increasing interest in the marine industry to use composites to improve the hydrodynamic and structural performance of naval structures. Composite materials have high strength-to-weight and stiffness-to-weight ratios, and the fiber orientations can be exploited to tailor the structural deformation to reduce the load and stress variations by automatically adjusting the shape of the structure. For marine propellers, the bending–twisting coupling characteristics of anisotropic composites can be exploited to passively tailor the blade rake, skew, and pitch distributions to improve propeller performance. To fully explore the advantages of composite marine propellers, a coupled boundary element (BEM) and finite element (FEM) approach is presented to study the fluid–structure interaction of flexible composite propellers in subcavitating and cavitating flows. An overview of the formulation for both the fluid and structural models is presented. Experimental validation studies are shown for two composite propellers tested at the Naval Surface Warfare Center (NSWCCD). The feasibility of passive hydroelastic tailoring of composite marine propellers is discussed.  相似文献   

18.
The fluid-structure interaction may occur in space launch vehicles,which would lead to bad performance of vehicles,damage equipments on vehicles,or even affect astronauts’ health.In this paper,analysis on dynamic behavior of liquid oxygen (LOX) feeding pipe system in a large scale launch vehicle is performed,with the effect of fluid-structure interaction (FSI) taken into consideration.The pipe system is simplified as a planar FSI model with Poisson coupling and junction coupling.Numerical tests on pipes between the tank and the pump are solved by the finite volume method.Results show that restrictions weaken the interaction between axial and lateral vibrations.The reasonable results regarding frequencies and modes indicate that the FSI affects substantially the dynamic analysis,and thus highlight the usefulness of the proposed model.This study would provide a reference to the pipe test,as well as facilitate further studies on oscillation suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号