首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An aerospike attached to a blunt body significantly alters its flowfield and influences aerodynamic drag at high speeds. The dynamic pressure in the recirculation area is highly reduced and this leads to the decrease in the aerodynamic drag. Consequently, the geometry of the aerospike has to be simulated in order to obtain a large conical recirculation region in front of the blunt body to get beneficial drag reduction. Axisymmetric compressible Navier–Stokes equations are solved using a finite volume discretization in conjunction with a multistage Runge–Kutta time stepping scheme. The effect of the various types of aerospike configurations on the reduction of aerodynamic drag is evaluated numerically at a length to diameter ratio of 0.5, at Mach 6 and at a zero angle of incidence. The computed density contours are showing satisfactory agreement with the schlieren pictures. The calculated pressure distribution on the blunt body compares well with the measured pressure data on the blunt body. Flowfield features such as formation of shock waves, separation region and reattachment point are examined for the flat-disc spike and on the hemispherical disc spike attached to the blunt body. One of the critical heating areas is at the stagnation point of a blunt body, where the incoming hypersonic flow is brought to rest by a normal shock and adiabatic compression. Therefore, the problem of computing the heat transfer rate near the stagnation point needs a solution of the entire flowfield from the shock to the spike body. The shock distance ahead of the hemisphere and the flat-disc is compared with the analytical solution and a good agreement is found between them. The influence of the shock wave generated from the spike is used to analyze the pressure distribution, the coefficient of skin friction and the wall heat flux facing the spike surface to the flow direction.  相似文献   

2.
A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120° apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.  相似文献   

3.
R.C. Mehta 《Shock Waves》2002,11(6):431-440
The pressure oscillations over a forward facing spike attached to an axisymmetric blunt body are simulated by solving time-dependent compressible Navier–Stokes equations. The governing fluid flow equations are discretized in spatial coordinates employing a finite volume approach which reduces the equations to semidiscretized ordinary differential equations. Temporal integration is performed using the two-stage Runge–Kutta time stepping scheme. A global time step is used to obtain a time-accurate numerical solution. The numerical computation is carried out for a freestream Mach number of 6.80 and for spike length to hemispherical diameter ratios of 0.5, 1.0 and 2.0. The flow features around the spiked blunt body are characterized by a conical shock wave emanating from the spike tip, a region of separated flow in front of the hemispherical cap, and the resulting reattachment shock wave. Comparisons of the numerical results are made with the available experimental results, such as schlieren pictures and the surface pressure distribution along the spiked blunt body. They are found to be in good agreement. Spectral analysis of the computed pressure oscillations are performed employing fast Fourier transforms. The surface pressure oscillations over the spike and phase plots exhibit a behaviour analogous to that of the Van der Pol equation for a self-sustained oscillatory flow. Received 28 February 2001 / Accepted 17 January 2002  相似文献   

4.
In the framework of the two-fluid model, a hypersonic flow of a nonuniform dusty gas with low inertial (non-depositing) particles around a blunt body is considered. The particle mass concentration is assumed to be small, so that the effect of particles on the carrier phase is significant only inside the boundary layer where the particles accumulate. Stepshaped and harmonic nonuniformities of the particle concentration ahead of the bow shock wave are considered and the corresponding nonstationary distributions of the particle concentration in the shock layer are studied. On the basis of numerical study of nonstationary two-phase boundary layer equations derived by the matched asymptotic expansion method, the effects of free-stream particle concentration nonuniformities on the thermal flux, and the friction coefficient in the neighborhood of stagnation point are investigated, in particular, the most “dangerous” nonuniformity periods are found. The project supported by the Russian Foundation for Basic Research (project No. 96-01-00313) and the National Natural Science Foundation of China (joint RFBR-NSFC grant No. 96-01-00017c)  相似文献   

5.
高超声速自适应激波针数值研究   总被引:1,自引:1,他引:0  
耿云飞  阎超 《力学学报》2011,43(3):441-446
针对传统的与钝体轴线共线安装的固定式激波针方法在有攻角状态所存在的问题, 在前人工作基础上得到一种新型高超声速飞行器减阻/降热方法------自适应激波针方法. 将该方法应用于三维高超声速轴对称钝锥外形以及扁平楔外形, 并采用数值模拟的方法对其进行了概念验证. 在0○~120○攻角范围内, 对不同L/D参数的激波针外形流场以及前缘壁面的压力、热流分布等进行了对比分析. 结果表明, 这种新型自适应激波针方法无论在无攻角还是有攻角状态, 均可有效降低高超声速飞行器头部壁面的压力和热流, 可以有效解决传统激波针方法在较大攻角情况状态下失效的问题.   相似文献   

6.
On the basis of the two-continuum model of dilute gas-solid suspensions, the dynamic behavior of inertial particles in supersonic dusty-gas flows past a blunt body is studied for moderate Reynolds numbers, when the Knudsen effect in the interphase momentum exchange is significant. The limits of the inertial particle deposition regime in the space of governing parameters are found numerically under the assumption of the slip and free-molecule flow regimes around particles. As a model problem, the flow structure is obtained for a supersonic dusty-gas point-source flow colliding with a hypersonic flow of pure gas. The calculations performed using the full Lagrangian approach for the near-symmetry-axis region and the free-molecular flow regime around the particles reveal a multi-layer structure of the dispersed-phase density with a sharp accumulation of the particles in some thin regions between the bow and termination shock waves. The project supported by the National Natural Science Foundation of China (90205024), and the Russian Foundation for Basic Research (RFBR grant No. 02-01-00770 and joint RFBR-NSFC grant No. 03-01-39004)  相似文献   

7.
带喷流激波针流动特性实验研究   总被引:2,自引:2,他引:0  
采用动态测力、动态测压和纹影等风洞实验技术,对加装了带喷流激波针的钝头体的绕流特性、稳定和非稳模态的形成条件和机理进行了研究.结果表明:带喷流激波针流场存在稳态和非稳态两种模态,超声速喷流的压比大于临界压比时流动处于稳定模态,反之则为非稳模态;增大激波针长度可减小钝头体阻力,但达到一定长度后,进一步减阻的效果不再显著;增大喷流压比能够有效减弱再附激波强度,有利于缓解单独激波针的肩部热斑问题;非稳模态下波系自激振荡对再附激波在钝头体表面所围的区域影响剧烈,振荡是周期性的,且存在确定的主导频率,主导频率随喷流压力比增大而减小;自激振荡的产生是由于喷流出口周围的反压在喷流压比小于临界压比时无法获得持续的平衡而导致.   相似文献   

8.
Stability and transition prediction of hypersonic boundary layer on a blunt cone with small nose bluntness at zero angle of attack was investigated. The nose radius of the cone is 0.5 mm; the cone half-angle is 5°, and the Mach number of the oncoming flow is 6. The base flow of the blunt cone was obtained by direct numerical simulation. The linear stability theory was applied for the analysis of the first mode and the second mode unstable waves under both isothermal and adiabatic wall condition, and eN method was used for the prediction of transition location. The N factor was tentatively taken as 10, as no experimentally confirmed value was available. It is found that the wall temperature condition has a great effect on the transition location. For adiabatic wall, transition would take place more rearward than those for isothermal wall. And despite that for high Mach number flows, the maximum amplification rate of the second mode wave is far bigger than the maximum amplification rate of the first mode wave, the transition location of the boundary layer with adiabatic wall is controlled by the growth of first mode unstable waves. The methods employed in this paper are expected to be also applicable to the transition prediction for the three dimensional boundary layers on cones with angle of attack.  相似文献   

9.
During hypersonic gas flow past a blunt body with a velocity on the order of the escape velocity or more, the gas radiation in the disturbed region behind the shock wave becomes the primary mechanism for aerodynamic heating and has a significant effect on the distribution of the gasdynamic parameters in the shock layer. This problem has been considered from different points of view by many authors. A rather complete review of these studies is presented in [1–4].In earlier studies [5, 6] the approximation of bulk emission was used. In this approximation, in order to account for the effect of radiative heat transfer a term is added in the energy equation which is equivalent to the body efflux, whose magnitude depends on the local thermodynamic state of the gas. However, the use of this assumption to solve the problem of inviscid flow past a blunt body leads to a singularity at the body [7, 8]. To eliminate the singularity, account is taken of the radiation absorption in a narrow wall layer [7], or the concept of a viscous and heat-conductive shock layer is used [8]. A further refinement was obtained by Rumynskii, who considered radiation selectivity and studied the flow of a radiating and absorbing gas in the vicinity of the forward stagnation point of a blunt body.In the present paper we study the distribution of the gasdynamic parameters in the shock layer over the entire frontal surface of a blunt body in a hypersonic flow of a radiating and absorbing gas with account for radiation selectivity.  相似文献   

10.
Experiments to demonstrate the use of the background-oriented schlieren (BOS) technique in hypersonic impulse facilities are reported. BOS uses a simple optical set-up consisting of a structured background pattern, an electronic camera with a high shutter speed and a high intensity light source. The visualization technique is demonstrated in a small reflected shock tunnel with a Mach 4 conical nozzle, nozzle supply pressure of 2.2 MPa and nozzle supply enthalpy of 1.8 MJ/kg. A 20° sharp circular cone and a model of the MUSES-C re-entry body were tested. Images captured were processed using PIV-style image analysis to visualize variations in the density field. The shock angle on the cone measured from the BOS images agreed with theoretical calculations to within 0.5°. Shock standoff distances could be measured from the BOS image for the re-entry body. Preliminary experiments are also reported in higher enthalpy facilities where flow luminosity can interfere with imaging of the background pattern. A version of this paper was presented at the 25th International Symposium on Shock Waves in Bangalore in July 2005.  相似文献   

11.
The problem of formation of spatially periodic structures on the frontal surface of a cylindrically blunted body set transversely in a hypersonic flow is studied. Within the framework of the model adopted, a possible mechanism of vortex structure generation on the frontal surface of the blunt body is proposed and confirmed by calculations; in this mechanism, the curved bow shock produces a vortex flow, while in its turn the vortex, which persists under weak dissipation, acts on the shock thus maintaining its curved shape. It is shown that the spatially periodic mode of hypersonic flow past a cylinder can exist in the case of a uniform incident flow and under homogeneous boundary conditions on the body surface.  相似文献   

12.
Flow past blunt bodies entering planetary atmospheres at hypersonic velocities is studied. A method for calculating the flowfield near the body nose is developed which allows for radiative heat transfer in the P 1 approximation of the spherical harmonics method but does not take gas viscosity and heat conduction into account. The solution is constructed on the basis of a two-layer flow model, with account for intense injection of ablation products from the body nose due to radiative heat fluxes from the shock layer. The advantages of the method are that the multi-dimensional character of the radiation field is taken into account and the general problem of radiation gasdynamics is solved on the basis of a unified algorithm. The flow past a spherical segment and a spherically-blunted cone re-entering the Earth’s atmosphere at a velocity of 20 km/s and an entry angle of ?10° is calculated.  相似文献   

13.
We describe here an experimental study on the effect of energy deposition in the flow field of a 120° blunt cone, carried out in a hypersonic shock tunnel. The energy deposition is realised using an electric arc discharge generated between two electrodes placed in the free stream, and various parameters influencing the effectiveness of this technique is studied. The experimental observations suggest that the location of energy deposition has a vital role in dictating the flow structure, with no noticeable effects being produced on the flow field when the discharge was located close to the body (0.416 times body diameter). In addition, the nature of the test gas and the free stream density are also identified as important parameters. In these experiments, a maximum drag reduction of ~50% and ~84% reduction in stagnation point heating rate has been observed as a result of energy addition. The experimental evidence also indicates that the relaxation of the internal degrees of freedom plays a major role in the alteration of the hypersonic blunt body flow structure and that under the specific conditions encountered in our experiments, the energy deposition is not strong enough to create a shock on its own, but the heated region behind the energy source interacts with the blunt body shock resulting in the flow field alteration.   相似文献   

14.
An analytic solution is obtained in the work in a Newtonian approximation [1] for the flow-past problem for a plane blunt body by a steady-state uniform hypersonic inviscous space-radiating gas flow. The hypersonic flow-past problem for axisymmetrical blunt bodies by a nonviscous space-radiating gas has been previously considered [2–4]. In this case a satisfactory solution of the problem was obtained even in a zero-th approximation by decomposing the unknown values in terms of a parameter equal to the ratio of gas densities before and after passage of the shock wave. The solution of the problem in a zero-th approximation with respect to in the case of flow-past of plane blunt bodies does not turn out to be satisfactory, since the departure of the shock and the radiant flux to the body as gas flows into the shock layer turns out to be strongly overstated under nearly adiabatic conditions. Freeman [5] demonstrated that results may be significantly improved for flow-past of a plane blunt body by a nonradiating gas if a more precise expression is used for the tangential velocity component expressed in a new approximation with respect to the parameter . This refinement is applied in this work for solving the flow-past problem for a plane blunt body by a space-radiating gas. The distribution of the gasdynamic parameters in the shock layer, the departure of the shock wave, and the radiant heat flux to the surface of the body are found. The solution obtained is analyzed in detail for the example of flow-past regarding a circular cylinder.Translated from Zhurnal Prikladnoi Mekhanikii Tekhnicheskoi Fiziki, No. 3, 68–73, May–June, 1975.  相似文献   

15.
A study is made of the flow of a viscous compressible gas in a hypersonic shock layer on sweptback wings of infinite span with blunt leading edge at different angles of attack. The equations of the hypersonic viscous shock layer with modified Rankine-Hugoniot relations across the shock wave and boundary conditions on the surface of the body that take into account slip and discontinuity of the temperature are solved by a method of successive approximation which yields not only an analytic solution for the first approximations but also an exact numerical solution when the method is implemented on a computer. The analytic solution of the problem is found in the first approximation. Expressions are obtained for the coefficients of friction and heat transfer on the surface of the body, and also for the profiles of the velocities and the temperature across the shock layer. Comparison of the analytic solution with the numerical solution reveals a satisfactory accuracy of the analytic solution for not too large Reynolds numbers.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 91–102, March–April, 1979.We thank G. A. Tirskii for his interest in the work and valuable discussions.  相似文献   

16.
韩桂来  姜宗林 《力学学报》2011,43(5):795-802
通过三维N-S方程的数值求解, 研究了支杆-钝头体结构在10o攻角M∞=6.0飞行条件下的流场结构和特点, 指出其气动力特性恶化的原因, 提出采用``军刺'挡板改善流场和气动力特性, 并通过对比两种不同挡板作用下的流场和气动力特性变化分析其作用机理, 发现``军刺'挡板结构分割流场抑制三维效应形成的周向流动, 迎风面形成稳定的回流区和剪切层结构, 将迎风面锥激波推离轴线, 降低钝头体肩部流动结构相互作用强度, 并在一定程度上缓解背风面流动干扰, 明显改善支杆-钝头体带攻角飞行时的气动力特性.   相似文献   

17.
In this investigation, the effects of spike as retractable drag and aerodynamic heating reduction into the reentry Earth’s atmosphere for hemispherical body flying at hypersonic flow have been numerically studied. This numerical solution has been carried out for different length, shapes and nose configuration of spike. Additional modifications to the tip of the spike are investigated in order to obtain different bow shocks, including no spike, conical, flat and hemispherical aerodisk mounted. Unsteady compressible 3-D Navier–Stokes equations are solved with k ? ω (SST) turbulence model for a flow over a forward facing spike attached to a heat shield for a free stream Mach number of 6. The obtained numerical results are compared with the experimental ones, and the results shows acceptable verification. This analysis shows that the aerodisk is more effective than aerospike. The designs produced 60 and 15 % reduction in drag and wall temperature responses, respectively.  相似文献   

18.
A study was made of conditions at the front of a strong shock wave taking account of the absorption of leading radiation. Emphasis is laid on the role of the dimensionless parameters which arise under these circumstances, and an evaluation is made of the values of these parameters for a number of practically important cases involving the entry of blunt bodies into dense layers of the Earth's atmosphere. Calculations are carried out to determine the composition and the parameters of the flow of molecular nitrogen entering into the shock wave, and conclusions are drawn with respect to the general problem of hypersonic flow around a blunt body, taking radiation into account. In an investigation of the flow of a hypersonic stream of air around a blunt body, taking account of radiation, it is necessary to have some idea of how the radiation leaving the zone of the shock wave reacts with the oncoming flow of cold air. The importance of taking this reaction into account is indicated by the results of observation of the reentry of spacecraft into dense layers of the atmosphere [1], and by existing experimental data on strong shock waves [2]. This reaction is bound up with the fact that the absorption of intense short-wave radiation from the shock wave in cold air leads to photodissociation and photoionization of the molecules of air, i.e., to an actual increase in the enthalpy of the air. Some of the general questions of the structure of a very strong direct shock wave, taking account of the absorption of radiation leading the wave front, have been investigated in [3],Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 40–47, November–December, 1970.  相似文献   

19.
Construction of third-order WNND scheme and its application in complex flow   总被引:2,自引:0,他引:2  
IntroductionWiththedevelopmentofaeronauticsandaerospacetechnology ,moreandmorerequirementsarearisingforCFD (computationalfluiddynamics) .Oneoftheproblemsistodevelophigherorderaccuracyschemes.Forexample ,whenapplyingLES (largeeddysimulation)orDNS(directnumericalsimulation)methodtosimulatingturbulenceproblem ,theschemesneedthirdorderaccuracyormoreinspace .Anotherquestionistheinfluenceofgrid’sscaletotopologicalstructureofflowfield .Inordertosimulatecomplicatedflowswithseparationorturbulencec…  相似文献   

20.
A method of possible diagnostics of supersonic flows around a blunt body and its aerodynamic characteristics by means of a thin channel of reduced density emerging in front of the bow shock wave is discussed. The channel was placed parallel to the body axis or inclined to it. Under the conditions of initially uniform pressure the temperature in the channel (the hot spike) is higher than that of the environment. A thin hot spike, which as its limit is infinitely thin, results in the formation of a precursory disturbance in front of the bow shock wave. The length of the precursor is comparable with the characteristic length, that is, the cross section of the blunt body. The hot spike when localized parallel to the body axis and not in line with it yields turning and deviating moments, a lift force was generated even for a symmetric blunt body. Possible applications of this effect are, for example, a change of the trajectory of a small asteroid by means of using the hot spike.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号