首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 375 毫秒
1.
在矩形管道粉尘爆炸装置中开展系列实验,系统研究了点火延迟时间、粉尘粒度及粉尘浓度对铝粉尘爆炸过程中最大爆炸压力和最大爆炸压力上升速率的影响。研究结果表明:不同的点火延迟时间对铝粉尘爆炸压力有显著影响,随着点火延迟时间由小变大,最大爆炸压力和最大爆炸压力上升速率呈现先增大后减小的趋势,且不同粒径的铝粉尘最大爆炸压力对应有不同点火延迟时间。随铝粉粒度的减小,最大爆炸压力和最大爆炸压力上升速率会呈现出先增大后减小的变化规律。铝粉最大爆炸压力和最大爆炸压力上升速率随浓度的增加均表现为先变大后减小的趋势,即铝粉浓度在特定数值时会使其爆炸威力最强。  相似文献   

2.
采用20 L近球形爆炸实验系统对锆粉尘云的爆炸特性开展了实验研究,分别分析了初始点火能量、点火延迟时间、粉尘云浓度3种因素对锆粉尘云爆炸强度的影响,揭示了锆粉尘云在密闭容器中的爆炸特性。在本实验条件下,结果表明:初始点火能量对锆粉尘云最大爆炸压力有显著影响,锆粉尘云最大爆炸压力随初始点火能量的增大而增大;随点火延迟时间的增加,锆粉尘云最大爆炸压力先增大后减小,存在最佳点火延迟时间;随粉尘云浓度的增大,锆粉尘云最大爆炸压力先增大后减小,存在最佳锆粉尘云浓度,得到锆粉尘云的爆炸下限为18~20 g/m3。  相似文献   

3.
为了研究装置点火延迟时间对不同浓度粉尘爆炸压力和压力上升速率的影响,以铝粉为介质在5L圆柱形爆炸装置中进行系列爆炸实验。结果表明:装置点火延迟时间对铝粉爆炸压力和压力上升速率有十分显著的影响,且存在一个最佳点火延迟时间,此时最大爆炸压力最大;随着铝粉浓度的增加,最佳点火延迟时间先增加后保持不变。最佳点火延迟时间下的最大爆炸压力和最大压力上升速率明显高于点火延迟时间固定为60s时的。相对粉尘不同浓度均采用固定点火延迟时间,不同浓度时采用最佳点火延迟时间,所测得的粉尘最大爆炸压力和最大压力上升速率明显符合实际。  相似文献   

4.
密闭空间煤粉的爆炸特性   总被引:4,自引:0,他引:4  
高聪  李化  苏丹  黄卫星 《爆炸与冲击》2010,30(2):164-168
利用ISO6184/1和IEC推荐的20L球型爆炸测试装置,对4种规格的煤粉进行了系统的粉尘爆炸实验,探讨了煤粉的爆炸规律。得到了样品的爆炸下限浓度、最大爆炸压力,最大爆炸压力上升速率变化规律;分析了浓度、粒径、点火能量对煤粉爆炸猛烈度的影响。结果表明,粒径越小的煤粉,爆炸下限越小,而且在指定浓度下爆炸越猛烈。随着浓度的增大,最大爆炸压力和上升速率先增后减。样品3,峰值爆炸压力对应的浓度为400~1000g/m3,爆炸压力最大值为0.54MPa;点火头能量的增大在一定程度上促使反应更充分,从而爆炸强度更强。由于煤粉组成的特点,实验数据一定程度上说明了爆炸过程中气相燃烧的重要作用。 更多还原  相似文献   

5.
为防控工业喷雾爆炸和完善喷雾爆炸测试方法,在20 L球形喷雾爆炸测试系统内,实验研究了不同环境压力、喷射压力及浓度下的甲醇喷雾液滴形成及爆炸特性规律。结果表明:增大喷射压力更易致使甲醇破碎成微小液滴,甲醇喷雾液滴爆炸极限范围变宽;环境压力的增大导致甲醇喷雾液滴粒径变大,喷雾液滴爆炸极限范围变窄,一定程度上可以有效抑制甲醇泄露可能导致的次生衍生事故发生。当爆炸容器内环境压力为0.1 MPa、喷射压力为2.1 MPa、甲醇喷雾浓度为356.4 g/m3、甲醇液滴索太尔平均直径为2.5 μm时,爆炸特性参数(最大爆炸压力、最大爆炸压力上升速率及层流燃烧速度)在上述拐点处取得最大值;小粒径(1~15 μm)的液滴在外界能量作用下,更易被点燃,且爆炸过程中瞬态物理化学反应更为迅速和剧烈;较大粒径(22 μm以上)的液滴会出现点火困难现象,然而点火成功后,爆炸特性参数均随甲醇喷雾浓度增加而增加,呈现近似线性规律,此时液滴粒径对上述爆炸特性参数的影响可以忽略。研究结果有助于理解喷雾液滴爆炸规律、完善相应测试方法和安全设计。  相似文献   

6.
武林湲  于立富  王天枢  孙威  徐建航  李航 《爆炸与冲击》2022,42(1):015401-1-015401-10
为探究油页岩粉尘的爆炸特性,以龙口(Longkou, LK)、茂名(Maoming, MM)、桦甸(Huadian, HD)和抚顺(Fushun, FS)4种油页岩粉尘为研究对象,采用20 L球形爆炸装置,对这4种油页岩粉尘样品开展系统的爆炸实验,探讨油页岩粉尘的粉尘云质量浓度、粒径、挥发分、灰分、氧含量等对其爆炸特性的影响。结果表明:挥发分含量越高,油页岩粉尘的最大爆炸压力pmax、最大压力上升速率(dp/dt)max越高,爆炸下限越低;挥发分和灰分对油页岩粉尘云爆炸分别有显著的促进和抑制作用。在37.52~106.43 μm粒径范围内,这4种油页岩粉尘样品的pmax和(dp/dt)max均随其粉尘粒径的增大而降低,且到达最大爆炸压力的时间逐步缩短,说明小粒径油页岩粉尘较高的脱挥发速率能提高爆炸的反应程度。当粉尘质量浓度在400~2 500 g/m3范围内时,pmax和(dp/dt)max均随粉尘云质量浓度的升高呈现先升高后降低的变化趋势,高于最佳粉尘云质量浓度(1 000 g/m3)时略有下降,但维持在较高水平,表明超过最佳质量浓度的粉尘云引燃后仍有较强的破坏力;LK样品的pmax和(dp/dt)max均最高,分别为0.61 MPa和29.32 MPa/s,与挥发分含量相当的褐煤在同一水平,其爆炸下限为200 g/m3,在4种样品中最低,高于挥发分含量相当的褐煤;在N2惰化条件下,LK样品的pmax和(dp/dt)max均随环境氧含量的降低而降低,当氧含量降至15%时,系统不再发生爆炸,极限氧含量为16%。  相似文献   

7.
在1.28LMIKE3管内对不同浓度的片状铝粉-空气混合物进行最小点火能测试;基于统计分析的Logistic回归模型,采用用以概率表示粉尘云最小点火能的计算方法,借助SPSS统计分析软件计算得到各浓度下片状铝粉点火概率随能量的分布曲线。研究结果表明:片状铝粉的最小点火能随浓度的增大先迅速减小后保持在一定的能量范围内,其爆炸敏感度比普通球状铝粉更高;与采用其他方法的计算结果相比,以概率表示特定物质的最小点火能更符合实际情况。  相似文献   

8.
在20 L球形爆炸容器中对二甲醚/空气(DME/air)、二甲醚/空气/氩气(DME/air/Ar)混合物在不同初始状态下的爆炸特性进行实验研究,分析了不同初始压力、不同氩气(Ar)稀释浓度对爆炸极限、最大爆炸压力以及最大爆炸压力上升速率的影响。结果表明:DME/air混合物的最大爆炸压力和最大爆炸压力上升速率与DME在混合物中的浓度呈圆顶形关系,最大值出现在DME在混合物中的浓度为6.5%(即最佳当量比, φ=1)附近;初始压力的下降明显降低了DME/air混合物的爆炸上限,但对于其爆炸下限影响不显著;Ar的稀释对富燃DME/air混合物的最大爆炸压力和最大爆炸压力上升速率有显著的惰化作用,但对于贫燃DME/air混合物,最大爆炸压力和最大爆炸压力上升速率在一定的Ar稀释浓度范围内出现上升趋势,当Ar的稀释浓度大于20%,这2个爆炸参数值逐渐下降。  相似文献   

9.
基于改进的20 L球形粉尘爆炸装置,在相同初始条件下分别测量了甲烷、石松子粉尘和甲烷/石松子两相混合体系的爆炸压力、爆炸压力上升速率和爆炸指数等参数,系统研究了甲烷/石松子粉尘两相混合体系爆炸特性变化规律。结果表明:甲烷的添加能显著提高低质量浓度石松子粉尘爆炸压力而降低高质量浓度石松子粉尘爆炸压力;甲烷对石松子粉尘最大爆炸压力没有显著影响,但能显著提高石松子粉尘最大爆炸压力上升速率。甲烷/石松子粉尘混合体系爆炸指数高于单相石松子粉尘爆炸指数,但甲烷/石松子粉尘混合体系和单相石松子粉尘爆炸指数均低于单相甲烷爆炸指数。工业生产过程中应避免粉尘混入可燃气体以降低粉尘爆炸危险性。  相似文献   

10.
以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为 21.21、14.51 和 8.64 μm 的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在 20 L 云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1) 对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2) 对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3) 对比云雾三种SMD,粒径8.64 μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在“转变区域”(transition range)现象;(4) 对于SMD在8~22 μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。  相似文献   

11.
王悦  白春华 《爆炸与冲击》2016,36(4):497-502
基于自行研发的20 L二次脉冲气动喷雾多相爆炸测试系统和全散射粒径测量系统,对乙醚液体燃料瞬态雾化云雾场的燃爆参数进行实验研究。通过调节气动压力、设计喷雾剂量,得到了粒径相同、质量浓度不同的乙醚云雾燃爆超压、温度及点火延迟时间等燃爆参数。结果表明,在索特平均直径为22.90 μm的条件下:乙醚云雾与空气混合物的燃爆下限为80.26 g/m3,燃爆上限为417.34 g/m3;最大超压峰值为0.78 MPa,其出现在云雾质量浓度为278.23 g/m3时;最大爆温峰值为1 260 ℃,其出现在云雾质量浓度为228.29 g/m3时;点火延迟时间在燃爆极限范围内呈U型分布。  相似文献   

12.
为揭示粒径分布对聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)粉尘云火焰温度的影响,本文分别采用热电偶和高速比色测温法测量了开敞空间不同粒径PMMA粉尘云的火焰温度特性。结果表明:相比30 μm粉尘粒子,100 nm粉尘粒子热解/挥发速率较快,燃烧更加充分,粉尘云火焰的最高温度可达1 551℃,而30 μm粉尘云火焰最高温度仅为1 108℃;在微米尺度,随着PMMA粉尘粒径的增大,火焰最高温度和高温火焰区面积先增大后减小;20 μm粉尘粒子由于其分散性较好,裂解气化特征时间尺度与燃烧反应特征时间尺度较接近,燃烧反应充分,火焰最高温度和高温火焰区面积均最大。  相似文献   

13.
本文报导了在1m~3和30m~3粉尘爆炸泄压试验装置内完成的一系列点火延迟时间t_V对粉尘爆炸泄放压力P影响的试验。试验结果表明t_V对P有很大的影响,t_V0.52秒时,P值最高,而t_V1.0秒时,P已降到很低。有些实际工业环境可能根本不会产生点火延迟时间很短的播散可燃粉尘的工况,这种情况下,要求的泄压面积可以小一些。所以无论是进行粉尘爆炸泄压试验研究,还是有粉尘爆炸危险性的受限空间泄压面积的计算中,都应当考虑点火延迟时间对爆炸泄放压力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号