共查询到19条相似文献,搜索用时 31 毫秒
1.
Hopkinson压杆实验技术的应用进展 总被引:21,自引:1,他引:20
SHPB实验装置是研究各类工程材料动态力学性能的最基本实验手段,它不仅可用于测量金属、高聚物等均匀性好、变形量较大材料的冲击压缩(拉伸、剪切、扭转)应力—应变关系,经改进后还可以用于测量质地软、波阻抗小的泡沫介质材料和质地脆、均匀性差的混凝土类材料的冲击压缩应力-应变关系。此外,SHPB实验装置因加载方式简单,加载波形易测易控制,还可以开展混凝土类材料的层裂强度研究,火工品、引信的安全性、可靠性检测,高G值加速度传感器的标定以及炸药材料的压剪起爆临界点的测定等。 相似文献
2.
科学的数据处理方法是通过分离式Hopkinson压杆试验给出准确的材料应力-应变关系的关键之一。为了相对准确地得到2A12铝合金材料的Johnson-Cook本构关系,针对该材料开展SHPB试验,在分析透反射波波形特征基础上,发展了中位数绝对偏差法与小波变换复合的一种滤波法,改进了传统对波方法,并提出了基于Johnson-Cook本构模型分析确定屈服应力与屈服应变的方法。研究表明,利用这些改进方法得到的试件归一化工程应力-应变曲线基本重合,得到的屈服应力数据与应变率近似满足幂函数关系。针对试验所得唯象屈服应变远大于真实屈服应变这一问题,改进了真实应力与真实应变的计算方法,并给出了2A12铝合金材料的Johnson-Cook本构关系,结果显示,2A12铝合金材料强度应变率强化因子为0.267、参考动态强度为374 MPa、塑性应变强化系数为397 MPa、强化指数为0.47。 相似文献
3.
变截面弹丸在分离式Hopkinson压杆中的应用 总被引:3,自引:0,他引:3
本文在分离式Hopkinson压杆系统中,探索了应用变截面锥形弹丸实现常应变率力学性能测试的实验方法,以及在较高应变率下实现动态卸载以获取材料的动态弹性模量的可行性。 相似文献
4.
高温分离式Hopkinson压杆技术及其应用 总被引:1,自引:0,他引:1
本文介绍了在分离式Hopkinson压杆装置上通过使用一种气动同步机构,实现对试样进行高温高应变率加载的技术。利用此技术仅对试样加高温度而保持入射杆和透射杆与试样脱离且处在较低温度,到预定温度时,借助气动同步机构使入射杆、透射杆与试样接触并同时实现对试样加载。利用波形抑制技术,仅对试样实现一次加载,入射杆中的后续二次加载波通过反作用质量块吸收。通过这些技术的结合,1)可以进行材料在高温高应变率下应力应变测试;2)可以测试材料在高应变率不同温度下的等温曲线;3)可以间接对材料的塑性功热转换系数进行测试;4)可以进行不同温度高应变率下的中断跳跃试验等。在文中给出了一些典型的试验曲线和结果,并对测试方法和结果进行了分析讨论。 相似文献
5.
许多工程问题需要测定各种材料在高应变率下的力学特性. 为达到这个目的,分离式Hopkinson 杆是现今世界上公认最成熟的、应用得也最广泛的现代实验技术. 这套装置的构型并不复杂,却能有效地获得大多数工程材料在每秒102~104的高应变率下的应力应变曲线. 这种实验装置的名称源自最初提出相关创意和原始设计的英国剑桥大学工程科学教授B. Hopkinson. 其实,B. Hopkinson 追随他的父亲J. Hopkinson 献身于工程科学,还有一段非常动人的故事. 相似文献
6.
为提高分离式Hopkinson压杆装置的测试效率与精度,通过对电磁驱动技术的分析,设计并进行了电磁线圈驱动导体杆的原理性实验。以微型分离式Hopkinson压杆装置为基础,将电磁线圈驱动原理用于撞击杆的驱动。通过单级线圈驱动不同长度撞击杆,获得储能电量与不同长度撞击杆的速度为线性关系。结合对镁合金材料的动态应力应变关系测试结果,证明此系统速度容易控制、重复性好、可靠性高和实用性强、电磁干扰并不影响信号采集。借助此原理,通过提高储能电量或采用多级同轴线圈驱动方法,可以实现各种规格的Hopkinson压杆装置中撞击杆的有效驱动,使Hopkinson杆测试装置简化。 相似文献
7.
用于脆性材料的Hopkinson压杆动态实验新方法 总被引:13,自引:3,他引:10
岩石、陶瓷或混凝土等脆性材料,在用Hopkinson压杆对其实施高应变率加载实验时,由于其破坏应变很小,试件通常在加栽入射波的波头部分(含初始上升沿和较大的弥散振荡部分)就已破坏失效,因此采用常规的实验或数据处理方法很难得到精确有效的实验结果,本文提出的Hopkinson压杆装置预留间隙实验法能使加载入射波波幅振荡明显减小且初始上升时间为零,有效地减小了弹性波弥散带来的误差,使贴于压杆中部的应变片测得的信号经处理后很大程度上直接反映的是试件端面的实际受力状态,且由于避免了试件在加载波上升沿段的不稳定受力而使应变率历史曲线更趋于恒定,这为提高Hopkinson压杆装置的实验精度,特别是为脆性材料提供了一种实施高应变率实验的实用可行的途径. 相似文献
8.
9.
大尺寸Hopkinson压杆及其应用 总被引:9,自引:2,他引:7
本文介绍了国内最大尺寸的SHPB装置;讨论了在大尺寸SHPB装置上测量混凝土类材料动态力学性能将会出现的几个问题;采取了在入射杆的打击端加设波形整形器,在试件与杆件之间加设万向头及在试件上直接测量应变等新的实验技术及采用新的数据处理方法,提高了试验结果的精确度和可信度;简要介绍了利用ф100 SHPB装置对四种体积含量(0,2%,4%和6%)钢纤维高强混凝土进行三种应变率(10~20/s,35~45/s和75~85/s)的冲击压缩实验。实验结果表明,钢纤维高强混凝土具有较强的应变率效应,其破坏应力、峰值应变随应变率增加而显著增加,弹性模量也随应变率增加而增加。另外,钢纤维含量对混凝土具有增韧效应,随着钢纤维含量的增加,其韧性增大,脆性降低。 相似文献
10.
多功能Hopkinson压杆型试验装置的研制与应用 总被引:1,自引:0,他引:1
对传统的Hopkinson压杆试验装置进行了改进和完善,除了用于材料的动态压缩以外,还能进行动态拉伸、绝热剪切、裂纹扩展速度测定、动态断裂韧性测试等.本文介绍了几种试验方法的基本原理,并给出了试验结果. 相似文献
11.
12.
13.
陈军红;尹标;徐伟芳;张方举;谢若泽 《爆炸与冲击》2024,44(5):053101-1-053101-11
利用分离式霍普金森压杆对TC11钛合金平板帽形试样进行动态加载,基于高频红外点阵测温技术捕捉了剪切区温升随加载时间变化的历程,结合热传导理论分析和动态剪切数值模拟,分析了动态剪切过程中剪切区温升随时间和空间的分布规律。研究结果表明,在动态剪切加载下,TC11钛合金表现出脆性的变形行为,剪切区最高温升为430 ℃,且在实验所覆盖的加载速率范围内,加载速率对动态剪切温升影响不明显;显著的温升主要集中在剪切区中心附近100 μm量级区域内,温升区具有高度局部化的特征,且剪切区维持较高温度所持续的时间在10 μs量级。理论研究和数值模拟发现,动态加载下剪切区内最高温度可达751 ℃,剪切区温度时空分布规律与实验结果保持一致。实验和数值模拟结果均显示,剪切区最高温升发生在材料断裂时刻,表明剪切区显著温升应来源于剪切变形造成的应变高度集中发展。 相似文献
14.
15.
多功能SHPB装置及水泥石材料的动态性能研究 总被引:1,自引:0,他引:1
为了研究在一定温度和压力下的水泥石的动态力学性能,研制了多功能SHPB材料动态性能测试装置,该装置可分别进行材料的拉伸,压缩,扭转性能测试,拉,压试验可以在带围压和温度的三向应力状态下进行,文中还对水泥石改性材料的动态力学性能进行了实验研究。 相似文献
16.
在测试材料动态力学性能时,直接撞击式霍布金森压杆(direct impact Hopkinson pressure bar,DIHPB)实验系统相对于分离式霍布金森压杆(split Hopkinson pressure bar,SHPB),往往能获得更高的应变率。本文中采用一种新型双剪切试样,在DIHPB系统下对603钢进行了动态剪切测试。获得了603钢在应变率1 500~33 000 s−1的剪应力-剪应变曲线,并与SHPB系统下的测试结果进行了对比。结果表明,由两种测试方法获得的流动应力具有较好的一致性,但曲线的上升沿存在明显区别。采用数值模拟对DIHPB方法的准确性进行了验证,并对该实验方法的适用条件进行了分析。采用DIHPB方法,可以观察到603钢的流动应力存在明显的应变率效应,但在较高的加载速度下材料的失效应力随着加载速度的增加而呈降低趋势。
相似文献17.
利用50 mm杆径的霍普金森压杆装置对完整和预制缺陷花岗岩试样进行层裂破坏实验,并采用高速摄像仪记录了试件层裂破坏的全过程。通过理论分析,计算了半正弦波加载情况下完整杆可能的初始层裂位置。高速摄影结果显示,预制缺陷对初始层裂位置具有一定影响,层裂一般发生在预制缺陷处。结合PFC2D(particle flow code in two dimensions)数值模拟进一步发现,初始层裂位置受到预制缺陷和反射拉伸波上升沿的影响,反射拉伸波上升沿越长,初始层裂越可能发生在预制缺陷处,反射拉伸波上升沿越短,初始层裂位置发生在预制缺陷处的可能性则相对越小。 相似文献
18.
Polymeric split Hopkinson pressure bars are often used to test low-impedance materials at elevated strain rates. However,
they tend to be viscoelastic, and a viscoelastic wave propagation model is required to analyze the data. This considerably
complicates the analysis over the more common linear elastic split Hopkinson bar. In this research, a polymeric split Hopkinson
bar is instrumented with electromagnetic velocity gages. The gages are placed at the interfaces between the bars and the specimen.
By using this arrangement, viscoelastic effects in the bars are negligible and the need for a viscoelastic correction is eliminated.
The method is applied by testing low-density foams. 相似文献