首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
We investigate the stability of a nonuniformly heated fluid in the gravitational field in a plane horizontal porous layer through which vertical forced motion is effected. A similar system was studied in [1, 2]. In the present paper, the nonuniformity of the permeability of the porous layer with respect to the depth and the dependence of the viscosity of the saturating fluid on the temperature are taken into account in addition. As a result of the application of the linear stability theory, an eigenvalue problem arises, which is solved numerically. A family of curves representing the dependence of the critical modified Rayleigh number Ra k on the injection parameter (the Péclet number Pe) for different degrees of inhomogeneity of the permeability and the viscosity is obtained. It is found that although Pe=0 corresponds to Ra k for uniform permeability and viscosity and the stability increases monotonically as Pe increases, the presence of nonuniformity of the permeability or the viscosity leads to the appearance of a stability minimum in the region Pe≈1, while under the simultaneous influence of these two factors, the minimum is shifted into the region Pe≈2. The results of the paper can be used, for example, in the investigation of heat transfer in the case of forced fluid motion in the fissures of a permeable rock mass, when, in the case of pumping through a horizontal fissure, the fluid penetrates vertically across its permeable walls into the stratum. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 3–7, November–December, 1986.  相似文献   

2.
In this paper the following problem is solved in the linear approximation. Let a flat plate separate two uniform inviscid fluid flows with different steady-state densities and velocities. These flows are subject to small time-dependent disturbances due to plate deformation. This problem is solved for arbitrary deformations as well as in the case of the angular harmonic oscillations of a flapping mover. The time-dependent forces acting on the plate are determined, together with the dynamic characteristics of the mover and the position of the fluid-fluid interface. Kazan'. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 55–64, January–February, 1994.  相似文献   

3.
Some aspects of the problem of the stability and the nature of the secondary regimes of a plane two-layer Poiseuille flow of viscous dielectric fluids between horizontal electrodes with a constant potential difference are considered. A linear analysis shows that the electrostatic field can induce the growth of perturbations with an asymptotically small wavenumber when the dielectric permeabilities of the fluids are different. On the assumption that the perturbation wavelength is large as compared with the thickness of one of the layers and comparable with the thickness of the other in order of magnitude, one of the possible mechanisms of development of finite fluctuations is investigated. Within the framework of this mechanism the initial mathematical mdoel can be reduced to an integrodifferential evolutionary Kuramoto-Sivashinsky-type equation describing the behavior of the fluid interface. The periodic solutions of this equation, which are investigated numerically, are bounded and fairly diverse. Krasnoyarsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 45–55, March–April, 2000.  相似文献   

4.
A solution of an initial-boundary-value problem for a system of integrodifferential equations which describes the plane waves excited in an initially stationary heavy two-layer ideal fluid by a cylinder moving at an angle to the horizontal is investigated. The homogeneous fluid fractions of different densities are assumed to be separated by an evolving fluid interface (horizontal plane, if the liquid is at rest). An approximate solution of two problems for the waves excited by a cylinder moving with a constant acceleration and an oscillating cylinder is constructed analytically. Nizhnii Novgorod. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–152, July–August, 1998.  相似文献   

5.
In this paper we consider an initial and boundary value problem that models the self-propelled motion of solids in a bidimensional viscous incompressible fluid. The self-propelling mechanism, consisting of appropriate deformations of the solids, is a simplified model of the propulsion mechanism of fish-like swimmers. The governing equations consist of the Navier–Stokes equations for the fluid, coupled to Newton’s laws for the solids. Since we consider the case in which the fluid–solid system fills a bounded domain we have to tackle a free boundary value problem. The main theoretical result in the paper asserts the global existence and uniqueness (up to possible contacts) of strong solutions of this problem. The second novel result of this work is the provision of a numerical method for the fluid–solid system. This method provides a simulation of the simultaneous displacement of several swimmers and is tested on several examples.  相似文献   

6.
We present a finite element (FEM) simulation method for pore geometry fluid flow. Within the pore space, we solve the single-phase Reynold’s lubrication equation—a simplified form of the incompressible Navier–Stokes equation yielding the velocity field in a two-step solution approach. (1) Laplace’s equation is solved with homogeneous boundary conditions and a right-hand source term, (2) pore pressure is computed, and the velocity field obtained for no slip conditions at the grain boundaries. From the computed velocity field, we estimate the effective permeability of porous media samples characterized by section micrographs or micro-CT scans. This two-step process is much simpler than solving the full Navier–Stokes equation and, therefore, provides the opportunity to study pore geometries with hundreds of thousands of pores in a computationally more cost effective manner than solving the full Navier–Stokes’ equation. Given the realistic laminar flow field, dispersion in the medium can also be estimated. Our numerical model is verified with an analytical solution and validated on two 2D micro-CT scans from samples, the permeabilities, and porosities of which were pre-determined in laboratory experiments. Comparisons were also made with published experimental, approximate, and exact permeability data. With the future aim to simulate multiphase flow within the pore space, we also compute the radii and derive capillary pressure from the Young–Laplace’s equation. This permits the determination of model parameters for the classical Brooks–Corey and van-Genuchten models, so that relative permeabilities can be estimated.  相似文献   

7.
A new interpretation of the concept of relative phase permeability is given. Relative phase permeabilities are represented in the form of fourth-rank tensors. It is shown that in the case of anisotropic porous media functions depending not only on the saturation but also on the anisotropy parameters represented in the form of ratios of the principal values of the absolute permeability coefficient tensor correspond to the classical representation of the relative phase permeabilities. For a two-phase flow in anisotropic porous media with orthotropic and transversely-isotropic symmetry a generalized two-term Darcy’s law is analyzed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 87–94, March–April, 1998. The work was carried out with support from the Russian Foundation for Fundamental Research (project No. 96-01-00623).  相似文献   

8.
A mathematical model of the process of water injection into a high-temperature steam-saturated geothermal reservoir is proposed. In the reservoir there is a zone of co-existence of steam and water which is separated from the steam and water zones by moving interfaces (phase transition fronts) whose location is determined in the process of solving the problem. Within the framework of the proposed model the thermodynamic contradiction that exists in the single-front case for low permeabilities, expressed as supercooling of the steam in the corresponding zone ahead of the interface [1, 2], is not observed. With increase in the permeability the two-front solution obtained goes smoothly over into a noncontradictory single-front solution. Neutral curves separating the domains of existence of the different types of solution in parameter space are constructed. Moscow. e-mail: barmin@inmech.msu.su. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 105–112, May–June, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 99-01-01042).  相似文献   

9.
The effect of Coriolis force on the onset of ferromagnetic convection in a rotating horizontal ferrofluid saturated porous layer in the presence of a uniform vertical magnetic field is studied. The boundaries are considered to be either stress free or rigid. The modified Brinkman–Forchheimer-extended Darcy equation with fluid viscosity different from effective viscosity is used to characterize the fluid motion. The condition for the occurrence of direct and Hopf bifurcations is obtained analytically in the case of free boundaries, while for rigid boundaries the eigenvalue problem has been solved numerically using the Galerkin method. Contrary to their stabilizing effect in the absence of rotation, increasing the ratio of viscosities, Λ, and decreasing the Darcy number Da show a partial destabilizing effect on the onset of stationary ferromagnetic convection in the presence of rotation, and some important observations are made on the stability characteristics of the system. Moreover, the similarities and differences between free–free and rigid–rigid boundaries in the presence of buoyancy and magnetic forces together or in isolation are emphasized in triggering the onset of ferromagnetic convection in a rotating ferrofluid saturated porous layer. For smaller Taylor number domain, the stress-free boundaries are found to be always more unstable than in the case of rigid boundaries. However, this trend is reversed at higher Taylor number domain because the stability of the stress-free case is increased more quickly than the rigid case.  相似文献   

10.
The plane problem of steady flow of a homogeneous fluid in a five-point oil reservoir recovery element with a hydrofracture of finite conductivity is considered. It is assumed that the motion of the fluid in the reservoir and in the fracture obeys a linear resistance law and that the permeability of the reservoir and the effective permeability of the fracture are sharply different. Analytic solutions are obtained for the case of an ideal fracture (fracture of infinite conductivity). The flows are analyzed numerically with allowance for the finite conductivity of the fracture. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 104–112, January–February, 1994.  相似文献   

11.
In this paper the two-dimensional Navier–Stokes system for incompressible fluid coupled with a parabolic equation through the Neumann type boundary condition for the second component of the velocity is considered. Navier–Stokes equations are defined on a given time dependent domain. We prove the existence of a weak solution for this system. In addition, we prove the continuous dependence of solutions on the data for a regularized version of this system. For a special case of this regularized system also a problem with an unknown interface is solved.  相似文献   

12.
In a previous study Arns et al. (2004, Transport Porous Media 55, 21–46) we considered the role of topology on drainage relative permeability curves computed using network models derived from a suite of tomographic images of Fontainebleau sandstone. The present study extends the analysis to more complex imbibition displacements where the non-wetting fluid can be disconnected by snap-off as a result of swelling of wetting films in the corners of pores and throats. In contrast to the findings for drainage displacements which showed that relative permeabilities are significantly affected by network topology, the present study shows that the effect of topology on imbibition relative permeabilities depends on the level of snap-off. For strongly wetting conditions where snap-off dominates the displacement the effect of network topology is significantly smaller than for weakly wet conditions where snap-off is suppressed. For contact angles sufficiently large to completely suppress snap-off, the effect of topology on imbibition relative permeabilities is similar to that for drainage displacements. The findings are valid for random networks and for networks displaying short-range pore–throat and longer range spatial correlations.  相似文献   

13.
Results of numerical simulations of the thermal action on a high-viscosity hydrocarbon fluid with temperature-dependent viscosity and thermal conductivity are presented. A system of equations of thermal convection in the Boussinesq approximation is used as the constitutive equations to describe the convection of the hydrocarbon fluid. The dynamics of the temperature field and convective structures in the fluid is studied. The spatial motion of the fluid is found to be locally nonuniform; the motion is accompanied by vortex flows; as a result, two regions with significantly different temperatures are formed in the medium. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 95–100, January–February, 2009.  相似文献   

14.
The singular behavior of the Horton–Rogers–Lapwood problem when a Newtonian fluid is replaced by a standard power-law fluid is investigated further. Using weakly nonlinear stability theory, an estimate is made of the amplitude of convection at which the convection is initiated (in the case of a fluid with index n > 1) or levels off (in the case of a fluid with n < 1).  相似文献   

15.
This article describes a semi-analytical model for two-phase immiscible flow in porous media. The model incorporates the effect of capillary pressure gradient on fluid displacement. It also includes a correction to the capillarity-free Buckley–Leverett saturation profile for the stabilized-zone around the displacement front and the end-effects near the core outlet. The model is valid for both drainage and imbibition oil–water displacements in porous media with different wettability conditions. A stepwise procedure is presented to derive relative permeabilities from coreflood displacements using the proposed semi-analytical model. The procedure can be utilized for both before and after breakthrough data and hence is capable to generate a continuous relative permeability curve unlike other analytical/semi-analytical approaches. The model predictions are compared with numerical simulations and laboratory experiments. The comparison shows that the model predictions for drainage process agree well with the numerical simulations for different capillary numbers, whereas there is mismatch between the relative permeability derived using the Johnson–Bossler–Naumann (JBN) method and the simulations. The coreflood experiments carried out on a Berea sandstone core suggest that the proposed model works better than the JBN method for a drainage process in strongly wet rocks. Both methods give similar results for imbibition processes.  相似文献   

16.
The effect of the scheme of fluid injection into a stratum on the length and the hydraulic drag of the initial portion of the flow through the porous medium and on the flow rate intercepted by a drainage slit separating the stratum from and end wall is investigated. The asymptotics of large and small values of the hydraulic conductivity coefficient of this slit are constructed. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–67, January–February, 1999. The work was carried out at the Moscow State Chemical Industry Academy.  相似文献   

17.
18.
Considering the exponential viscosity–temperature relation, effect of temperature-dependent viscosity on forced convection of a liquid through a porous medium, bounded by isoflux parallel plates, is investigated numerically based on the general model of momentum transfer. Local effects of viscosity variation on the distribution of velocity and temperature are analyzed. Moreover, global aspects of the problem are investigated where corrections are proposed for total pressure drop and the fully developed Nusselt number, in the form of out/in viscosity ratio. Results are obtained over a wide range of permeabilities from clear (of solid material) fluid to very low permeability, where for constant properties one expects a nearly slug flow.  相似文献   

19.
The Cauchy problem of propagation of plastic state zones in a boundless medium from the boundary of a convex surface, along which normal pressure and shear forces act, is considered. In the case of complete plasticity, the Tresca system of quasi-static equations of ideal plasticity, which describes the stress-strain state of the medium, is known to be hyperbolic and to be similar to a system that describes a steady-state flow of an ideal incompressible fluid. This system is numerically solved with the use of a difference scheme applied for hyperbolic systems of conservation laws. Results of numerical calculations are presented. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 74–80, July–August, 2008.  相似文献   

20.
The problem of translational motion of a vortex source in a three-layer fluid bounded by a bottom from below is considered. The fluid in each layer is perfect, incompressible, heavy, and homogeneous. Based on the previously developed method, formulas for disturbed complex velocities of the fluid in each layer and the wave drag and lift force of the vortex source are obtained. The vortex motion is considered near the interface of two semi-infinite fluid media and in a two-layer fluid with different conditions at the boundary. In all cases, the hydrodynamic characteristics of the vortex source are given as functions of the Froude number. In a number of problems, these characteristics have discontinuities at the transition through the critical Froude numbers. The character of these discontinuities is studied analytically. Omsk Department of Sobolev Institute of Mathematics, Siberian Division, Russian Academy of Sciences, Omsk 644099. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 5, pp. 140–146, September–October, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号