首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 106 毫秒
1.
The purpose of this study is to investigate the effects of various bimodal pore size distributions of biporous wicks for a loop heat pipe (LHP). The study was conducted following a statistical method using a two-level factorial plan involving three variables (particle size of pore former:74–88 and 125–149 μm Na2CO3, pore former content:20% by volume and 25% by volume, sintering temperature:700 and 750°C). Finally, the heat transport capability of the LHP between monoporous wicks and biporous wicks has been investigated. Experimental results show that, at the sink temperature of 10°C and the allowable evaporator temperature of 80°C, the heat transfer capacity of the better biporous wick achieved 200 W and the total thermal resistance was 0.31°C/W. The performance is enhanced about 60%, compared to a monoporous wick for 125 W and 0.53°C/W. Therefore, LHPs with biporous wicks are very attractive for high heat flux applications in the future.  相似文献   

2.
The fact that heat is transferred into a heat pipe through the liquid-saturated evaporator wick gives rise to the so-called boiling limit on the heat pipe capacity. The composite nature of the double-wall artery heat pipe (DWAHP) wick structure makes the prediction of the evaporator superheat (Δ Tcrit) and the critical radial heat flux (qr) very difficult. The effective thermal conductivity of the wick, the effective radius of critical nucleation cavity, and the nucleation superheat, which are important parameters for double-wall wick evaporator heat transfer, have been evaluated based on the available theoretical models. Empirical correlations are used to corroborate the experimental results of the 2 m DWAHP. A heat choke mounted on the evaporator made it possible to measure the evaporator external temperatures, which were not measured in the previous tests. The high values of the measured evaporator wall temperatures are explainable with the assumption of a thin layer of vapor blanket at the inner heating surface. It has been observed that partial saturation of the wick (lean evaporator) causes the capillary limit to drop even though it may be good for efficient convective heat transfer through the wick. The 2 m long copper-water heat pipe had a peak performance of 1850 W at 23 W/cm2 with a horizontal orientation.  相似文献   

3.
An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and −20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.  相似文献   

4.
 Investigation has been carried out on the thermal performance of sintered miniature heat pipes with 3 mm outer diameter. In the theoretical analysis, the influence of wick structure parameters is determined by using the theory of capillary limitation. As a result, the degree of importance is found to be as follows: porosity, powder diameter and thickness of wick structure. In the experiments, heat pipes with sintered dendritic copper powder wicks were fabricated and tested. The maximum heat transfer rate is about 13 W with an effective heat pipe length of 20 cm. By adopting the formulae developed for both sintered spherical powder and fiber and adjusting their proportion, the agreement between experimental results and prediction is found to be quite good in the tested operation temperature range. Received on 26 February 2001  相似文献   

5.
This paper presents the heat transfer coefficients and the pressure drop measured during HFC-410A condensation inside a commercial brazed plate heat exchanger: the effects of saturation temperature, refrigerant mass flux and vapour super-heating are investigated. The heat transfer coefficients show weak sensitivity to saturation temperature and great sensitivity to refrigerant mass flux and vapour super-heating. At low refrigerant mass flux (<20 kg/m2 s) the saturated vapour condensation heat transfer coefficients are not dependent on mass flux and are well predicted by Nusselt [W. Nusselt, Die oberflachenkondensation des wasserdampfes, Energy 60 (1916) 541–546, 569–575] analysis for vertical surface: the condensation process is gravity controlled. For higher refrigerant mass flux (>20 kg/m2s) the saturated vapour condensation heat transfer coefficients depend on mass flux and are well predicted by Akers et al. [W.W. Akers, H.A. Deans, O.K. Crosser, Condensing heat transfer within horizontal tubes, Chem. Eng. Prog. Symp. Series 55 (1959) 171–176] equation: forced convection condensation occurs. In the forced convection condensation region the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by Webb [R.L. Webb, Convective condensation of superheated vapor, ASME J. Heat Transfer 120 (1998) 418–421] model. A simple linear equation based on the kinetic energy per unit volume of the refrigerant flow is proposed for the computation of the frictional pressure drop.  相似文献   

6.
This research focuses on acquiring accurate flow boiling heat transfer data and flow pattern visualization for three refrigerants, R134a, R236fa and R245fa in a 1.030 mm channel. We investigate trends in the data, and their possible mechanisms, for mass fluxes from 200 to 1600 kg/m2s, heat fluxes from 2.3 kW/m2 to 250 kW/m2 at Tsat = 31 °C and ΔTsub from 2 to 9 K. The local saturated flow boiling heat transfer coefficients display a heat flux and a mass flux dependency but no residual subcooling influence. The changes in heat transfer trends correspond well with flow regime transitions. These were segregated into the isolated bubble (IB) regime, the coalescing bubble (CB) regime, and the annular (A) regime for the three fluids. The importance of nucleate boiling and forced convection in these small channels is still relatively unclear and requires further research.  相似文献   

7.
The influence of oil on nucleate pool boiling heat transfer   总被引:1,自引:0,他引:1  
The influence of various oil contents in R134a is investigated for nucleate pool boiling on copper tubes either sandblasted or with enhanced heating surfaces (GEWA-B tube). Polyolester oils (POE) (Reniso Triton) with medium viscosity 55 cSt (SE55) and high viscosity 170 cSt (SE170) were used. Heat transfer coefficients were obtained for boiling temperatures between −28.6 and +20.1°C. The oil content varied from 0 to 5% mass fraction. For the sandblasted tube and the SE55 oil the heat transfer coefficients for the refrigerant/oil-mixture can be higher or lower than those for the pure refrigerant, depending on oil mass fraction, boiling temperature and heat flux. In some cases the highest heat transfer coefficients were obtained at a mass fraction of 3%. For the 170 cSt oil there is a clear decrease in heat transfer for all variations except for a heat flux 4,000 W/m2 and −10.1°C at 0.5% oil content. The heat transfer coefficients are compared to those in the literature for a smooth stainless steel tube and a platinum wire. For the enhanced tube and 55 cSt oil the heat transfer coefficients are clearly below those for pure refrigerant in all cases. The experimental results for the sandblasted tube are compared with the correlation by Jensen and Jackman. The calculated values are within +20 and −40% for the medium viscosity oil and between +50% and −40% for the high viscosity oil. A correlation for predicting oil-degradation effects on enhanced surfaces does not exist.  相似文献   

8.
In order to optimize the structure of a CPL evaporator and enhance heat transfer, a mathematical and physical model is developed to analyze the flow and heat transfer in the porous wick of the evaporator, whose calculation domain is divided into two parts: vapor-saturated region and liquid-saturated region. The characteristics of flow and heat transfer in the porous wick of a CPL evaporator have been numerically studied according to the field synergy principle. The influences of geometrical structures and heat flux on heat transfer enhancement are analyzed and illustrated by the figures in the present paper.  相似文献   

9.
In tube heat transfer characteristics of R410A and R404A have been experimentally investigated in a smooth horizontal tube made of stainless steel with an inner diameter of 6 mm and a length of 6 m, uniformly heated by the Joule effect. The evaporation pressures has been varied within the range from 3 to 12 bar, the refrigerant mass flux within the range from 290 to 1100 kg/m2 s and the heat flux within the range from 11 to 39 kW/m2. In this paper attention is focused on the comparison between experimental results and theoretical results predicted with the most known correlations from literature. The best agreement was found with the results of the correlation of Kandlikar [J. Heat-Transfer, 112 (1990) 219]. A modification of the Kandlikar correlation has been proposed in the present paper to predict the local heat transfer coefficients obtained with the test facility. A correction factor that enhance the influence of the nucleate boiling term has been introduced to take into account the influence of the reduced pressure on the heat transfer coefficients.  相似文献   

10.
The heat transfer coefficients of the evaporative water flow in mini/microchannels are studied experimentally to explore the novel heat dissipation for high power electronics. Two sets of parallel channels which are 61 channels with hydraulic diameter of 0.293 mm and 20 channels with hydraulic diameter of 1.2 mm are investigated respectively. The inlet and outlet temperatures of fluids, and the temperatures beneath the channels are measured to calculate the heat dissipation of the evaporative water in channels. The experiments are carried out with the mass flow rates range from 11.09 kg/(m2 s) to 44.36 kg/(m2 s) for minichannels and 49.59 kg/(m2 s) to 198.37 kg/(m2 s) for microchannels. The effective heat flux range from 5 W/cm2 to 50 W/cm2, and the resulted outlet vapor qualities range from 0 to 0.8. The relations of the heat transfer coefficient with heat flux and vapor quality are analyzed according to the results. The experimental heat transfer coefficients are compared with the prediction of latest developed correlations. A new correlation takes the effect of Bond number is proposed, and be verified that it is effective to predict the heat transfer coefficient of both minichannels and microchannels in a large range of vapor qualities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号