首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
现有残余应力计算方法未能考虑材料塑性变形和焊接接头刚度不匹配的影响,使得焊接残余应力计算结果和实际残余应力存在较大偏差.在2219-T87铝合金钨极氩弧焊焊接头残余应力测试基础上,提出一种基于非线性有限元和材料弹性模量分区的残余应力—释放应变曲线的残余应力计算方法,研究了材料塑性变形和接头刚度不匹配对焊接残余应力计算的影响.结果表明,焊接接头中非均质材料塑性不匹配可以引起对于残余应力计算的较大误差;材料塑性变形对残余应力的影响大于接头刚度不匹配对残余应力的影响.所提出方法修正了传统方法在焊接接头的残余应力计算中由于未考虑接头非均质材料塑性不匹配而引起的误差.  相似文献   

2.
We present a comprehensive study of the effects of internal boundaries on the accuracy of residual stress values obtained from the eigenstrain method. In the experimental part of this effort, a composite specimen, consisting of an aluminum cylinder sandwiched between steel cylinders of the same diameter, was uniformly heated under axial displacement constraint. During the experiment, the sample temperature and the reaction stresses in the load frame in response to changes in sample temperature were monitored. In addition, the local (elastic) lattice strain distribution within the specimen was measured using neutron diffraction. The eigenstrain method, utilizing finite element modeling, was then used to predict the stress field existing within the sample in response to the constraint imposed by the load frame against axial thermal expansion. Our comparison of the computed and measured stress distributions showed that, while the eigenstrain method predicted acceptable stress values away from the cylinder interfaces, its predictions did not match experimentally measured values near them. These observations indicate that the eigenstrain method is not valid for sample geometries with this type of internal boundaries.  相似文献   

3.
A unified method for solving the strip yield model for collinear cracks in finite and infinite sheet is proposed. The method is based on the weight function of a single crack. Two collinear cracks in finite and infinite sheets are used to apply and verify this method. The plastic zone size, crack opening displacement and stress distribution along the ligament between cracks obtained by using the present method are extensively compared with existing available results and finite element solutions, and very good agreements are observed. Combined with the Crack Tip Opening Angle (CTOA) criterion, the unified method is used to predict the crack growth behavior and residual strength for 2024-T3 aluminum alloy sheet with Multiple Site Damage (MSD). Thirty-two sheets with four types of MSD are designed and tested to verify this method. It is shown that the present method is able to predict various crack growth behaviors observed in experiment. The predicted residual strengths are within 9% of the corresponding test results. Compared to the elastic–plastic finite element method, the present method is much more efficient.  相似文献   

4.
A numerical simulation is presented to predict the free surface and its interactions with heat transfer and cure for flow of a shear-thinning resin through the fibre preform the flow part of the simulation is based on the finite element/control volume method. Since the traditional control volume approach produces an error associated with a mass balance inconsistency, a new method which overcomes this issue is proposed, the element control volume method. The heat transfer and cure analysis in the simulation are based on the finite difference/control volume method. Since heat conduction is dominant in the through-thickness direction and most of the heat convection is in-plane, heat transfer and cure are solved in fully three-dimensional form. A simple concept of the boundary condition constant is introduced which models a realistic mould configuration with a heating element located at a distance behind the mould wall. The varying viscosity throughout the mould associated with the strain rate, temperature and degree of cure distribution may be accounted for in calculating the mould-filling pattern. This introduces a two-way coupling between momentum and energy transport in fibrous media during mould filling.  相似文献   

5.
采用共旋应变的三维热弹塑性有限变形有限元法   总被引:3,自引:0,他引:3  
本文采用线性化共旋应变张量和增率型虚功原理,建立了有限变形热力耦合弹塑性有限元法。在该方法中,材料的流动应力取为应变总量、应变速率和温度的函数,推导了包含这种函数关系的本构矩阵。另外在温度场分析中,考虑了塑性功和摩擦功转化的热量。文后给出的算例表明该方法可以很好地模拟热加工过程。  相似文献   

6.
针对组分材料体积含量任意分布的黏弹性功能梯度材料裂纹问题建立有限元分析途径. 通过Laplace变换,将黏弹性问题转化到象空间中求解,基于反映材料非均匀的梯度单元和裂纹尖端奇异特性的奇异单元计算象空间中的位移、应力和应变场,应用虚拟裂纹闭合方法得到应变能释放率,分别由应力和应变能释放率确定应力强度因子. 给出这些断裂参量在物理空间和象空间之间的对应关系,由数值逆变换求出其在物理空间的相应值. 文中分析两端均匀受拉的黏弹性边裂纹板条,首先针对松弛模量表示为空间函数和时间函数乘积的特殊梯度材料进行计算,结合对应原理验证方法的有效性. 然后分析组分材料体积含量具有任意梯度分布的情形,由Mori-Tanaka方法预测象空间中的等效松弛模量. 计算结果表明,蠕变加载条件下,应变能释放率随时间增加,其增大程度与黏弹性组分材料体积含量相关. 由于梯度材料的非均匀黏弹性性质,产生应力重新分布,导致应力强度因子随时间变化,其变化范围与组分材料的体积含量分布方式有关.  相似文献   

7.
塑性应变能使材料微观组织结构发生不可逆变化,从而引起等效宏观应力,该应力随循环加载而增大.假定材料疲劳源处破坏是由最大拉应力引起的,最大等效宏观应力与外加应力叠加达到材料本征断裂应力时形成微裂纹.微裂纹引起上述两部分应力变化,继续加载直至宏观裂纹出现,从而得到材料的疲劳寿命.本文所建立的多轴疲劳寿命公式包含材料参数、拉应力以及塑性应变能等,以上数据可通过单轴疲劳数据和有限元方法获得.通过对SM45C材料的计算验证,表明该模型对多轴随机应变加载低周疲劳寿命,具有良好的预测结果.  相似文献   

8.
分析了目前一些有限元专著中轴对称热传导有限元方法推导中的问题,给出了轴对称热传导有限元格式的正确表达形式。  相似文献   

9.
百万核电汽轮机红套低压转子工作环境的蒸汽参数较低,各级轮盘均处于湿度较大的工作区域,易产生应力腐蚀,引起裂纹萌生和扩展.为提高轮盘的抗腐蚀能力,降低工作应力是一个有效的方法.通过热处理方法,在轮盘表面形成预压应力以抵消部分旋转拉应力是可行的方法,而产生适当深度和大小的预压应力则需对热处理过程进行谨慎的设计.本文以汽轮机轮盘为研究对象,建立轴对称有限元模型,通过对ABAQUS软件的二次开发,实现对轮盘热处理过程的温度场及应力场进行数值模拟.计算综合考虑了非线性的材料热物性参数、力学性能参数、表面换热系数及不同材料组织转变的相变潜热、热物性参数和力学参数,通过对不同热处理方法得到的残余应力场的比较,获得了较合理的水冷方式,为热处理工艺确定提供参考.  相似文献   

10.
A numerical analysis of convective drying of a 3D porous solid of brick material is carried out using the finite element method and mass lumping technique. The energy equation and moisture transport equations for the porous solid are derived based on continuum approach following Whitaker’s theory of drying. The governing equations are solved using the Galerkin’s weighted residual method, which convert the governing equations into discretized form of matrix equations. The resulting capacitance matrices are made diagonal matrices by following the classical row-sum mass lumping technique. Hence with the use of the Eulerian time marching scheme, the final equations are reduced to simple algebraic equations, which can be solved directly without using an equation solver. The proposed numerical scheme is initially validated with experimental results for 1D drying problem and then tested by application to convective drying of 3D porous solid of brick material for four different aspect ratios obtained by varying the cross section of the solid. The mass lumping technique could correctly predict the wet bulb temperature of the solid under evaporative drying conditions. A parametric study carried out for three different values of convective heat transfer coefficients, 15, 30 and 45 W/m2 K shows an increased drying rate with increase in area of cross section and convective heat transfer coefficient. The proposed numerical scheme could correctly predict the drying behavior shown in the form of temperature and moisture evolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号