首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements.More information at:
G. HetsroniEmail:
  相似文献   

2.
An iterative procedure, based on the proper orthogonal decomposition (POD), first proposed by Everson and Sirovich (J Opt Soc Am A 12(8):1657–1664, 1995) is applied to marred particle image velocimetry (PIV) data of shallow rectangular cavity flow at Mach 0.19, 0.28, 0.38, and 0.55. The procedure estimates the POD modes while simultaneously estimating the missing vectors in the PIV data. The results demonstrate that the absolute difference between the repaired vectors and the original PIV data approaches the experimental uncertainty as the number of included POD modes is increased. The estimation of the dominant POD modes is also shown to converge by examining the subspace spanned by the POD eigenfunctions.
Nathan E. Murray (Corresponding author)Email:
Lawrence S. UkeileyEmail:
  相似文献   

3.
Transient sub-critical droplet evaporation in non-isothermal stagnant gaseous mixtures taking into account the effects of radiation, liquid volumetric expansion and droplet heating is investigated numerically. We obtained equations for Stefan velocity and the rate of change of the droplet radius taking into account liquid volumetric expansion, and derived the boundary conditions taking into account the effect of liquid thermal expansion. It is shown that in the case of sub-critical evaporation neglecting the liquid volumetric expansion causes underestimation of the evaporation rate at the initial stage and overestimation of the evaporation rate at the final stage of droplet evaporation.
T. ElperinEmail:
  相似文献   

4.
5.
We develop the axisymmetric Synthetic Schlieren technique to study the wake of a microscale sphere settling through a density stratification. A video-microscope was used to magnify and image apparent displacements of a micron-sized random-dot pattern. Due to the nature of the wake, density gradient perturbations in the horizontal greatly exceed those in the vertical, requiring modification of previously developed axisymmetric techniques. We present results for 780 and 383 μm spheres, and describe the limiting role of noise in the system for a 157 μm sphere. This technique can be instrumental in understanding a range of ecological and environmental oceanic processes on the microscale.
King-Yeung Yick (Corresponding author)Email:
Roman StockerEmail:
Thomas PeacockEmail:
  相似文献   

6.
A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique.
R. J. MunroEmail:
  相似文献   

7.
An electrochemical technique is used to study local mass transfer coefficients on surfaces of inclined enclosures over the range 1.1×104 < RaH < 1.4×1010 for a nominal Schmidt number of 2280. Scaling with gcos instead of g in the Rayleigh number correlates the data well at low angles of inclination; however, as either the aspect ratio or the angle of inclination increase, the longitudinal density stratification causes the data to deviate from a power law scaling.
R. J. GoldsteinEmail: Phone: +1-612-6255552Fax: +1-612-6253434
  相似文献   

8.
Flow within a large-aspect-ratio cylindrical vortex cell has been explored experimentally. The flow was driven by a shear layer above an opening in the cylinder circumference. Reynolds numbers, based on the length of the opening and the velocity just outside it, exceed 50,000. It is shown that the expected solid body rotation within the cell, with a constant velocity gradient across most of the core, is qualitatively present, but is significantly distorted by three-dimensional effects. Nonetheless, turbulence levels within the core are very low, only rising to levels similar to those in regular turbulent shear flows within the driving mixing layer itself and the cell-wall boundary layers.
Ian CastroEmail:
  相似文献   

9.
Variational optical flow estimation for particle image velocimetry   总被引:1,自引:1,他引:1  
We introduce a novel class of algorithms for evaluating PIV image pairs. The mathematical basis is a continuous variational formulation for globally estimating the optical flow vector fields over the whole image. This class of approaches has been known in the field of image processing and computer vision for more than two decades but apparently has not been applied to PIV image pairs so far. We pay particular attention to a multi-scale representation of the image data so as to cope with the quite specific signal structure of particle image pairs. The experimental evaluation shows that a prototypical variational approach competes in noisy real-world scenarios with three alternative approaches especially designed for PIV-sequence evaluation. We outline the potential of the variational method for further developments.The publications of the CVGPR Group are listed under .
P. RuhnauEmail:
H. NobachEmail:
  相似文献   

10.
This paper reports laser-Doppler measurements of the mean flow and turbulence stresses in a swirling pipe flow. Experiments were carried out under well-controlled laboratory conditions in a refractive index-matched pipe flow facility. The results show pronounced asymmetry in mean and fluctuating quantities during the downstream decay of the swirl. Experimental data reveal that the swirl significantly modifies the anisotropy of turbulence and that it can induce explosive growth of the turbulent kinetic energy during its decay. Anisotropy invariant mapping of the turbulent stresses shows that the additional flow deformation imposed by initially strong swirling motion forces turbulence in the core region to tend towards the isotropic two-component state. When turbulence reaches this limiting state it induces rapid production of turbulent kinetic energy during the swirl decay.
J. Jovanović (Corresponding author)Email:
F. DurstEmail:
  相似文献   

11.
The technique of conformal transformations of the metric, widely used in general relativity and in cosmology, is applied to the analysis of heat conduction in an anisotropic medium, in which the thermal conductivity is described by a tensor instead of a scalar. The anisotropic medium is reduced to an effective equivalent one, which is isotropic. The simplification is achieved for a particular conformal factor of the transformation, uniquely determined under physically reasonable assumptions on the thermal conductivity, density, and specific heat of the medium. Another application consists in the formal elimination of source or sink terms from the heat equation by using a suitable conformal transformation.
Valerio FaraoniEmail:
  相似文献   

12.
The understanding of the physics of flapping flight has long been limited due to the obvious experimental difficulties in studying the flow field around real insects. In this study the time-dependent three-dimensional velocity field around a flapping wing was measured quantitatively for the first time. This was done using a dynamically-scaled wing moving in mineral oil in a pattern based on the kinematics obtained from real insects. The periodic flow is very reproducible, due to the relatively low Reynolds number and precise control of the wing. This repeatability was used to reconstruct the full evolving flow field around the wing from separate stereoscopic particle image velocimetry measurements for a number of spanwise planes and time steps. Typical results for two cases (an impulsive start and a simplified flapping pattern) are reported. Visualizations of the obtained data confirm the general picture of the leading-edge vortex that has been reported in recent publications, but allow a refinement of the detailed structure: rather than a single strand of vorticity, we find a stable pair of counter-rotating structures. We show that the data can also be used for quantitative studies, such as lift and drag prediction.
C. Poelma (Corresponding author)Email: Phone: +31-15-2782620
W. B. DicksonPhone: +1-626-3955775
  相似文献   

13.
Simultaneous dual-plane PIV experiments, which utilized three cameras to measure velocity components in two differentially separated planes, were performed in streamwise-spanwise planes in the log region of a turbulent boundary layer at a moderate Reynolds number (Re 1100). Stereoscopic data were obtained in one plane with two cameras, and standard PIV data were obtained in the other with a single camera. The scattered light from the two planes was separated onto respective cameras by using orthogonal polarizations. The acquired datasets were used in tandem with continuity to compute all 9 velocity gradients, the complete vorticity vector and other invariant quantities. These derived quantities were employed to analyze and interpret the structural characteristics and features of the boundary layer. Sample results of the vorticity vector are consistent with the presence of hairpin-shaped vortices inclined downstream along the streamwise direction. These vortices envelop low speed zones and generate Reynolds shear stress that enhances turbulence production. Computation of inclination angles of individual eddy cores using the vorticity vector suggests that the most probable inclination angle is 35° to the streamwise-spanwise plane with a resulting projected eddy inclination of 43° in the streamwise-wall-normal plane.
Ellen K. LongmireEmail:
  相似文献   

14.
Comment on the Clauser chart method for determining the friction velocity   总被引:1,自引:0,他引:1  
A known difficulty with using the Clauser chart method to determine the friction velocity in wall bounded flows is that it assumes, a priori, a logarithmic law for the mean velocity profile. Using both experimental and DNS data in the literature, this note explicitly shows how friction velocities obtained using the Clauser chart method can potentially mask subtle Reynolds-number-dependent behavior.
Tie WeiEmail:
  相似文献   

15.
Two- and three-dimensional flows in nearly cuboidal cavities are investigated experimentally. A tight cavity is formed in the gap between two long and parallel cylinders of large radii by adding rigid top, bottom, and end walls. The cross-section perpendicular to the axes of the cylinders is nearly rectangular with aspect ratio Γ. The axial aspect ratio Λ > 10 is large to suppress end-wall effects. The fluid motion is driven by independent and steady rotation of the cylinders about their axes which defines two Reynolds numbers Re 1,2. Stability boundaries of the nearly two-dimensional steady flow have been determined as functions of Re 1,2 for Γ = 0.76 and Γ = 1. Up to six different three-dimensional supercritical modes have been identified. The critical thresholds for the onset of most of the three-dimensional modes, three of which have been observed for the first time, agree well with corresponding linear-stability calculations. Particular attention is paid to the flow for Γ = 1 under symmetric and parallel wall motion. In that case the basic flow consists of two mirror symmetric counter-rotating parallel vortices. They become modulated in span-wise direction as the driving increases. Detailed LDV measurements of the supercritical three-dimensional velocity field and the bifurcation show an excellent agreement with numerical simulations.
Tanja Siegmann-Hegerfeld (Corresponding author)Email:
Stefan AlbensoederEmail:
Hendrik C. KuhlmannEmail:
  相似文献   

16.
A random synthetic jet array driven turbulence tank   总被引:1,自引:0,他引:1  
We measure the flow above an array of randomly driven, upward-facing synthetic jets used to generate turbulence beneath a free surface. Compared to grid stirred tanks (GSTs), this system offers smaller mean flows at equivalent turbulent Reynolds numbers with fewer moving parts.
Evan A. VarianoEmail:
  相似文献   

17.
The present paper analyzes the features of a low-Reynolds number free submerged jet with special regard to statistical quantities on the jet centerline. Measurements in an environment with very low disturbances allowed to observe details of turbulence and higher-order moments. Some peculiar features of the measured (natural) jet are shown to be in correspondence to observations referring to forced higher-Reynolds number jets. In particular, it is shown that, at low Reynolds numbers, the initial region of the jet is dominated by well-defined vortices in the shear layer. This result is substantiated by both the statistical moments and the spectral analysis. The presence of two distinct regimes is evidenced and discussed from a physical standpoint, also in relation to the mathematical analysis of the jet structure from the bibliography.
Pier Giorgio SpazziniEmail:
  相似文献   

18.
The most important rheological and mathematical features of the pom–pom model are presently used to compare and improve other constitutive models such as the Giesekus and Phan-Thien–Tanner models. A pragmatic methodology is selected that allows derivation of simple constitutive equations, which are suited to possible software implementation. Alterations to the double convected pom–pom, Phan-Thien–Tanner and Giesekus models are proposed and assessed in rheometric flows by comparing model predictions to experimental data.
Benoit Debbaut (Corresponding author)Email:
  相似文献   

19.
The paper presents an efficient analytical method of solving the problem of a rotary heat regenerator taking into account longitudinal heat conduction in the matrix. The small parameter method, Laplace transform as well as one of the spline functions have been applied for approximation of an initial condition in the reversion time. In the application part, the solution for a model in analysis of an influence of longitudinal conduction in the matrix on effectiveness of rotary heat regenerator in a wide range of dimensionless parameters as well as for the particular matrix applied in air-conditioning was used.
Mieczysław PorowskiEmail:
  相似文献   

20.
The scales in a transitional boundary layer subject to high (initially 8%) free-stream turbulence and strong acceleration (K as high as 9×10–6) were investigated using wavelet spectral analysis and conditional sampling of experimental data. The boundary layer shows considerable evolution through transition, with a general shift from the lower frequencies induced by the free-stream unsteadiness to higher frequencies associated with near-wall-generated turbulence. Within the non-turbulent zone of the intermittent flow, there is considerable self-similarity in the spectra from the beginning of transition to the end, with the dominant frequencies in the boundary layer remaining constant at about the dominant frequency of the free-stream. The frequencies of the energy-containing scales in the turbulent zone change with streamwise location and are significantly higher than in the non-turbulent zone. When normalized on the local viscous length scale and velocity, however, the turbulent zone spectra also show good self-similarity throughout transition. Turbulence dissipation occurs almost exclusively in the turbulent zone. The velocity fluctuations associated with dissipation are isotropic, and their normalized spectra at upstream and downstream stations are nearly identical. The distinct differences between the turbulent and non-turbulent zones suggest the potential utility of intermittency based transition models in which these zones are treated separately. The self-similarity noted in both energy containing and dissipation scales in both zones suggests possibilities for simplifying the modeling for each zone.
Ralph J. VolinoEmail: Phone: 410-293-6520Fax: 410-293-3041
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号