首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, an \({L^p}\)-approach to the primitive equations is developed. In particular, it is shown that the three dimensional primitive equations admit a unique, global strong solution for all initial data \({a \in [X_p,D(A_p)]_{1/p}}\) provided \({p \in [6/5,\infty)}\). To this end, the hydrostatic Stokes operator \({A_p}\) defined on \({X_p}\), the subspace of \({L^p}\) associated with the hydrostatic Helmholtz projection, is introduced and investigated. Choosing \({p}\) large, one obtains global well-posedness of the primitive equations for strong solutions for initial data \({a}\) having less differentiability properties than \({H^1}\), hereby generalizing in particular a result by Cao and Titi (Ann Math 166:245–267, 2007) to the case of non-smooth initial data.  相似文献   

2.
Let \({S\subset\mathbb{R}^2}\) be a bounded Lipschitz domain and denote by \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\) the set of mappings \({u\in W^{2,2}(S;\mathbb{R}^3)}\) which satisfy \({(\nabla u)^T(\nabla u) = Id}\) almost everywhere. Under an additional regularity condition on the boundary \({\partial S}\) (which is satisfied if \({\partial S}\) is piecewise continuously differentiable), we prove that the strong W 2,2 closure of \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)\cap C^{\infty}(\overline{S};\mathbb{R}^3)}\) agrees with \({W^{2,2}_{\text{iso}}(S; \mathbb{R}^3)}\).  相似文献   

3.
We prove the uniqueness of positive ground state solutions of the problem \({ {\frac {d^{2}u}{dr^{2}}} + {\frac {n-1}{r}}{\frac {du}{dr}} + u \ln(|u|) = 0}\), \({u(r) > 0~\forall r \ge 0}\), and \({(u(r),u'(r)) \to (0, 0)}\) as \({r \to \infty}\). This equation is derived from the logarithmic Schrödinger equation \({{\rm i}\psi_{t} = {\Delta} \psi + u \ln \left(|u|^{2}\right)}\), and also from the classical equation \({{\frac {\partial u}{\partial t}} = {\Delta} u +u \left(|u|^{p-1}\right) -u}\). For each \({n \ge 1}\), a positive ground state solution is \({ u_{0}(r) = \exp \left(-{\frac{r^2}{4}} + {\frac{n}{2}}\right),~0 \le r < \infty}\). We combine \({u_{0}(r)}\) with energy estimates and associated Ricatti equation estimates to prove that, for each \({n \in \left[1, 9 \right]}\), \({u_{0}(r)}\) is the only positive ground state. We also investigate the stability of \({u_{0}(r)}\). Several open problems are stated.  相似文献   

4.
Stereoscopic particle image velocimetry has been used to investigate inertia dominated, transitional and turbulent flow in a randomly packed bed of monosized PMMA spheres. By using an index-matched fluid, the bed is optically transparent and measurements can be performed in an arbitrary position within the porous bed. The velocity field observations are carried out for particle Reynolds numbers, \({Re}_{{p}}\), between 20 and 3220, and the sampling is done at a frequency of 75 Hz. Results show that, in porous media, the dynamics of the flow can vary significantly from pore to pore. At \({Re}_{{p}}\) around 400 the spatially averaged time fluctuations of total velocity reach a maximum and the spatial variation of the time-averaged total velocity, \(u_\mathrm{tot}\) increases up to about the same \({Re}_{{p}}\) and then it decreases. Also in the studied planes, a considerable amount of the fluid moves in the perpendicular directions to the main flow direction and the time-averaged magnitude of the velocity in the main direction, \(u_{x}\), has an averaged minimum of 40% of the magnitude of \(u_\mathrm{tot}\) at \({Re}_{{p}}\) about 400. For \({Re}_{{p}} > 1600\), this ratio is nearly constant and \(u_{x}\) is on average a little bit less than 50% of \(u_\mathrm{tot}\). The importance of the results for longitudinal and transverse dispersion is discussed.  相似文献   

5.
We focus on a special type of domain wall appearing in the Landau–Lifshitz theory for soft ferromagnetic films. These domain walls are divergence-free \({\mathbb{S}^2}\)-valued transition layers that connect two directions \({m_\theta^\pm \in \mathbb{S}^2}\) (differing by an angle \({2\theta}\)) and minimize the Dirichlet energy. Our main result is the rigorous derivation of the asymptotic structure and energy of such “asymmetric” domain walls in the limit \({\theta \downarrow 0}\). As an application, we deduce that a supercritical bifurcation causes the transition from symmetric to asymmetric walls in the full micromagnetic model.  相似文献   

6.
This study investigated the physical clogging of uniformly graded porous media under constant flow rates using natural porous media and suspensions. The porous media selected for this experimental study was a fine-to-medium sandy soil fractioned into thirteen uniformly graded beds: seven unisize beds and six uniform beds. The physical clogging of the beds was studied using two types of silt suspensions as along with two suspension concentrations and three water discharges. It was found that the permeability reduction due to physical clogging \([(K_\mathrm{i} - K_\mathrm{t})/K_\mathrm{i}]\) increased with decreasing \({D}_{15}/{d}_{85}\) ratios until a critical value of \({D}_{15}/{d}_{85}\), after which a surface mat of suspension was formed on the porous media. It was also found that the value of reduced permeability at any time (at any number of pore volumes of injected suspension-laden water), \(K_\mathrm{t}\), is directly proportional to square of \({D}_{15}\) and inversely proportional to \({C}_{\mathrm{u}}\) of the porous media and \({d}_{85}\) of suspensions. The effects of suspension type and flow rates on physical clogging seemed to depend on the size of the pores in the porous media.  相似文献   

7.
We prove global well-posedness for instationary Navier–Stokes equations with initial data in Besov space \({B^{0}_{n,\infty}(\Omega)}\) in whole and half space, and bounded domains of \({{\mathbb R}^{n}}\), \({n \geq 3}\). To this end, we prove maximal \({L^{\infty}_{\gamma}}\) -regularity of the sectorial operators in some Banach spaces and, in particular, maximal \({L^{\infty}_{\gamma}}\) -regularity of the Stokes operator in little Nikolskii spaces \({b^{s}_{q,\infty}(\Omega)}\), \({s \in (-1, 2)}\), which are of independent significance. Then, based on the maximal regularity results and \({b^{s_{1}}_{q_{1},\infty}-B^{s_{2}}_{q_{2,1}}}\) estimates of the Stokes semigroups, we prove global well-posedness for Navier–Stokes equations under smallness condition on \({\|u_{0}\|_{B^{0}_{n,\infty}(\Omega)}}\) via a fixed point argument using Banach fixed point theorem.  相似文献   

8.
We study the asymptotic behaviour of the resolvents \({(\mathcal{A}^\varepsilon+I)^{-1}}\) of elliptic second-order differential operators \({{\mathcal{A}}^\varepsilon}\) in \({\mathbb{R}^d}\) with periodic rapidly oscillating coefficients, as the period \({\varepsilon}\) goes to zero. The class of operators covered by our analysis includes both the “classical” case of uniformly elliptic families (where the ellipticity constant does not depend on \({\varepsilon}\)) and the “double-porosity” case of coefficients that take contrasting values of order one and of order \({\varepsilon^2}\) in different parts of the period cell. We provide a construction for the leading order term of the “operator asymptotics” of \({(\mathcal{A}^\varepsilon+I)^{-1}}\) in the sense of operator-norm convergence and prove order \({O(\varepsilon)}\) remainder estimates.  相似文献   

9.
We analyze the spectrum structure of some kinetic equations qualitatively by using semigroup theory and linear operator perturbation theory. The models include the classical Boltzmann equation for hard potentials with or without angular cutoff and the Landau equation with \({\gamma\geqq-2}\). As an application, we show that the solutions to these two fundamental equations are asymptotically equivalent (mod time decay rate \({t^{-5/4}}\)) as \({t\to\infty}\) to that of the compressible Navier–Stokes equations for initial data around an equilibrium state.  相似文献   

10.
In (Isett, Regularity in time along the coarse scale flow for the Euler equations, 2013), the first author proposed a strengthening of Onsager’s conjecture on the failure of energy conservation for incompressible Euler flows with Hölder regularity not exceeding \({1/3}\). This stronger form of the conjecture implies that anomalous dissipation will fail for a generic Euler flow with regularity below the Onsager critical space \({L_t^\infty B_{3,\infty}^{1/3}}\) due to low regularity of the energy profile. This paper is the first and main paper in a series of two, the results of which may be viewed as first steps towards establishing the conjectured failure of energy regularity for generic solutions with Hölder exponent less than \({1/5}\). The main result of the present paper shows that any given smooth Euler flow can be perturbed in \({C^{1/5-\epsilon}_{t,x}}\) on any pre-compact subset of \({\mathbb{R}\times \mathbb{R}^3}\) to violate energy conservation. Furthermore, the perturbed solution is no smoother than \({C^{1/5-\epsilon}_{t,x}}\). As a corollary of this theorem, we show the existence of nonzero \({C^{1/5-\epsilon}_{t,x}}\) solutions to Euler with compact space-time support, generalizing previous work of the first author (Isett, Hölder continuous Euler flows in three dimensions with compact support in time, 2012) to the nonperiodic setting.  相似文献   

11.
We study the Cauchy theory for a multi-species mixture, where the different species can have different masses, in a perturbative setting on the three dimensional torus. The ultimate aim of this work is to obtain the existence, uniqueness and exponential trend to equilibrium of solutions to the multi-species Boltzmann equation in \({L^1_vL^\infty_x(m)}\), where \({m\sim (1+ |v|^k)}\) is a polynomial weight. We prove the existence of a spectral gap for the linear multi-species Boltzmann operator allowing different masses, and then we establish a semigroup property thanks to a new explicit coercive estimate for the Boltzmann operator. Then we develop an \({L^2-L^\infty}\) theory à la Guo for the linear perturbed equation. Finally, we combine the latter results with a decomposition of the multi-species Boltzmann equation in order to deal with the full equation. We emphasize that dealing with different masses induces a loss of symmetry in the Boltzmann operator which prevents the direct adaptation of standard mono-species methods (for example Carleman representation, Povzner inequality). Of important note is the fact that all methods used and developed in this work are constructive. Moreover, they do not require any Sobolev regularity and the \({L^1_vL^\infty_x}\) framework is dealt with for any \({k > k_0}\), recovering the optimal physical threshold of finite energy \({k_0=2}\) in the particular case of a multi-species hard spheres mixture with the same masses.  相似文献   

12.
13.
14.
In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions \({P^+\neq P^-}\). As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599–629, 2010) for the compressible two-fluid model, where \({P^+=P^-}\) (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737–755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that \({\Delta P=P^+ - P^-=f\neq 0}\) where the difference function \({f}\) is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to \({P^-}\). This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.  相似文献   

15.
Regarding P.-L. Lions’ open question in Oxford Lecture Series in Mathematics and its Applications, Vol. 3 (1996) concerning the propagation of regularity for the density patch, we establish the global existence of solutions to the two-dimensional inhomogeneous incompressible Navier–Stokes system with initial density given by \({(1 - \eta){\bf 1}_{{\Omega}_{0}} + {\bf 1}_{{\Omega}_{0}^{c}}}\) for some small enough constant \({\eta}\) and some \({W^{k+2,p}}\) domain \({\Omega_{0}}\), with initial vorticity belonging to \({L^{1} \cap L^{p}}\) and with appropriate tangential regularities. Furthermore, we prove that the regularity of the domain \({\Omega_0}\) is preserved by time evolution.  相似文献   

16.
We construct a Sobolev homeomorphism in dimension \({n \geqq 4,\,f \in W^{1,1}((0, 1)^n,\mathbb{R}^n)}\) such that \({J_f = {\rm det} Df > 0}\) on a set of positive measure and J f  < 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that \({f_k\to f}\) in \({W^{1,1}_{\rm loc}}\).  相似文献   

17.
We look at the effective Hamiltonian \({\overline{H}}\) associated with the Hamiltonian \({H(p,x)=H(p)+V(x)}\) in the periodic homogenization theory. Our central goal is to understand the relation between \({V}\) and \({\overline{H}}\). We formulate some inverse problems concerning this relation. Such types of inverse problems are, in general, very challenging. In this paper, we discuss several special cases in both convex and nonconvex settings.  相似文献   

18.
19.
We consider the temporal homogenization of linear ODEs of the form \({\dot{x}=Ax+\epsilon P(t)x+f(t)}\), where P(t) is periodic and \({\epsilon}\) is small. Using a 2-scale expansion approach, we obtain the long-time approximation \({x(t)\approx {\rm exp}(At) \left( \Omega(t)+\int_0^t {\rm exp}(-A \tau) f(\tau) {\rm d}\tau \right)}\), where \({\Omega}\) solves the cell problem \({\dot{\Omega}=\epsilon B \Omega + \epsilon F(t)}\) with an effective matrix B and an explicitly-known F(t). We provide necessary and sufficient conditions for the accuracy of the approximation (over a \({{\mathcal{O}}(\epsilon^{-1})}\) time-scale), and show how B can be computed (at a cost independent of \({\epsilon}\)). As a direct application, we investigate the possibility of using RLC circuits to harvest the energy contained in small scale oscillations of ambient electromagnetic fields (such as Schumann resonances). Although a RLC circuit parametrically coupled to the field may achieve such energy extraction via parametric resonance, its resistance R needs to be smaller than a threshold \({\kappa}\) proportional to the fluctuations of the field, thereby limiting practical applications. We show that if n RLC circuits are appropriately coupled via mutual capacitances or inductances, then energy extraction can be achieved when the resistance of each circuit is smaller than \({n\kappa}\). Hence, if the resistance of each circuit has a non-zero fixed value, energy extraction can be made possible through the coupling of a sufficiently large number n of circuits (\({n\approx 1000}\) for the first mode of Schumann resonances and contemporary values of capacitances, inductances and resistances). The theory is also applied to the control of the oscillation amplitude of a (damped) oscillator.  相似文献   

20.
This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms \({-\Lambda^{2\alpha}u}\) for the velocity field and \({-\Lambda^{2\beta}b}\) for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号