首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.  相似文献   

2.
压电板壳自由振动的三维精确分析   总被引:12,自引:0,他引:12  
本文简要评述了压电材料板壳结构的研究现状,着重介绍了近年来我们在压电板壳三维分析方面所做的工作:(1)四边简支横观各向同性压电矩形板的状态空间分析方法:(2)横观各向同性压电圆板和环板的状态空间分析方法;(3)横观各向同性压电圆柱壳和球面各向同性压电球壳耦合振动的精确分析。这些工作都直接从压电弹性力学三维基本方程出发,不引进任何变形假设,因此可作为二维简化理论和数值计算方法的校核标准。文末对今后压电材料板壳的研究方向也作了展望。  相似文献   

3.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

4.
This paper deals with closed-form solutions for in-plane and out-of-plane free vibration of moderately thick laminated transversely isotropic spherical shell panels on the basis of Sanders theory without any usage of approximate methods. The governing equations of motion and the boundary conditions are derived using Hamilton’s principle. The highly coupled governing equations are recast to some uncoupled equations by introducing four potential functions. Also, some relations were presented for the unknowns of the original set of equations in terms of the unknowns of the uncoupled equations. According to the proposed analytical approach, both Navier and Lévy-type explicit solutions are developed for moderately thick laminated spherical shell panels. The efficiency and high accuracy of the present approach are investigated by comparing some of the present study with the available results in the literature and the results of 3D finite element method. The effects of various shell parameters like shear modulus ratio of transversely isotropic materials and curvature ratio on the natural frequencies are studied. Clearly, the proposed solutions can accurately predict the in-plane and out-of-plane natural frequencies of moderately thick transversely isotropic spherical shell panels.  相似文献   

5.
压电复合材料中的Eshelby夹杂问题   总被引:1,自引:0,他引:1  
王旭  沈亚鹏 《力学学报》2003,35(1):26-32
通过采用解析延拓和共形映射技术,获得了压电复合材料中有关Eshelby夹杂几个典型问题的精确弹性解答,即横观各向同性压电介质中任意形状的Eshelby夹杂与圆柱异相夹杂间相互作用;一般各向异性压电介质中任意形状的Eshelby夹杂与双压电材料所形成界面的相互作用.成功求解这些问题的关健在于构造一个辅助函数.与Ru所采用的方法不同,所引入的辅助函数在无穷远点不存在极点,从而使得所展开的分析更加自然合理.分析结果清楚地揭示出Eshelby夹杂的存在对压电复合材料机电耦合响应将产生不容被忽视的影响.很典型的一个例于是当一个Eshelby椭圆夹杂与圆柱异相夹杂相互作用时,每个夹杂体内部的应力场和电场都将是不均匀的;另一个例于是位于界面附近的Eshelby夹杂有可能是界面发生损伤的一个重要原因.  相似文献   

6.
In this paper, the closed-form solutions of the electroelastic Eshelbys tensors of a piezoelectric ellipsoidal inclusion in an infinite non-piezoelectric matrix are obtained via the Greens function technique. Based on the generalized Budianskys energy-equivalence framework and the closed-form solutions of the electroelastic Eshelbys tensors, a unified model for multiphase piezocomposites with the non-piezoelectric matrix and piezoelectric inclusions is set up. The closed-form solutions of the effective electroelastic moduli of piezocomposites are also obtained. The unified model has a rigorous but simple form, which can describe the multiphase piezocomposites with different connectivities, such as 0–3, 1–3, 2–2, 2–3, 3–3 connectivities, etc. It can also describe the effects of non-interaction and interaction among the inclusions. As examples, the closed-form solutions of the effective electroelastic moduli are given by means of the dilute solution for the 0–3 piezocomposite with transversely isotropic piezoelectric spherical inclusions and by means of the dilute solution and the Mori–Tanakas method for the 1–3 piezocomposite with two kinds of transversely isotropic piezoelectric cylindrical inclusions. The predicted results are compared with experimental data, which shows that the theoretical curves calculated by means of the Mori–Tanakas method agree quite well with the experimental values, but the theoretical curves obtained by the dilute solution agree well with the experimental values only when the volume fraction of the ceramic inclusion is less than 0.3. The results in this paper can be used to analyze and design the multiphase piezocomposites.  相似文献   

7.
The exact axisymmetric solution is derived for an infinite transversely isotropic piezoelectric body containing an electrically conductive, rigid spheroidal inclusion under an axial pull. A simple general solution is employed in which three quasi-harmonic functions are involved and can be assumed in a closed form. The arbitrary constants are determined from the continuity conditions at the surface of the inclusion. The load-deflection and load-potential relations are derived, especially for two degenerated cases that are very important in the strength analysis of composite piezoelectric materials.  相似文献   

8.
The present work addresses the problem of calculation of the macroscopic effective elastic properties of composites containing transversely isotropic phases. As a first step, the contribution of a single inhomogeneity to the effective elastic properties is quantified. Relevant stiffness and compliance contribution tensors are derived for spheroidal inhomogeneities. The limiting cases of spherical, penny-shaped and cylindrical shapes are discussed in detail. The property contribution tensors are used to derive the effective elastic moduli of composite materials formed by transversely isotropic phases in two approximations: non-interaction approximation and effective field method. The results are compared with elastic moduli of quasi-random composites.  相似文献   

9.
Based on three-dimensional elastic theory of piezoelectric materials, the axisymmetric state space formulation of piezoelectric laminated circular plates is derived. Finite Hankel transforms are used and the boundary variables in free terms are replaced, for two kinds of boundary conditions, to obtain ordinary differential equations with constant coefficients. Regarding the axisymmetric free vibration problem, two exact solutions for two different boundary conditions are found. Discarding piezoelectric effect, the exact solutions for transversely isotropic circular laminates are also obtained through the same procedure. Numerical examples are given and compared with those of Finite Element Method (FEM) .  相似文献   

10.
黄弘读  侯鹏飞 《力学季刊》2001,22(4):508-511
本文利用Chen和Shioya给出的在横观各向同性压电无限体内币形裂纹上下表面作用对称法向点力和点电荷情形下的解,结合压电材料之功的互等定,用初等函数的形式给出了在压电无限体中任意一点作用任意点力和点电荷情形下币形裂纹的张开位移,并对PZT-4压电陶瓷和非压电材料作了计算分析。  相似文献   

11.
Summary Utilizing the general solution of transversely isotropic piezoelectricity, the paper analyzes the problem of an inclined rigid circular flat punch indenting a transversely isotropic piezoelectric half-space. The potential theory method is employed and generalized to take into account the effect of the electric field in piezoelectric materials. Assuming that the punch is maintained at a constant electric potential, exact expressions for the elastoelectric field are derived in terms of elementary functions. It is noted that the solution corresponding to a flat circular punch centrally loaded by a concentrated force can be obtained as a special case. Received 15 December 1998; accepted for publication 9 March 1999  相似文献   

12.
特征值为二重根的压电材料异材界面端奇异性   总被引:1,自引:0,他引:1  
横观各向同性压电材料的特征值的不同,其一般解的形式也不同,压电结合材料问题的求解,可以归结为寻找合适的调和函数,针对材料特征值为二重根(s1^2≠s2^2=s3^2)的情况,将变量分离形式的调和函数作特征展开,推导了横观各向同性压电材料轴对称异材界面端附近的奇民异应力场和奇异电位移场,给出院 决定奇异性的特性方程,结果表明,电位移场和应力场具有相同的奇异性,奇异性次数不仅与界面端形状以及材料的机械性质有关。也与材料的压电特性有关。  相似文献   

13.
The state vector equations for space axisymmetric problems of transversely isotropic piezoelectric media are established from the basic equations. Using the Hankel transform, the state vector equations are reduced to a system of ordinary differential equations. An analytical solution of the problems in the Hankel transform space is presented in the form of the product of initial state vector and transfer matrix. The transfer matrices are given for the three distinct eigenvalues. Applications of the solutions are discussed. An analytical solution for the transversely isotropic semi-infinite piezoelectric media subjected to concerted point loads on the surface z=0 is presented in the Hankel transform space. Using transfer matrix and the continuity conditions at the layer interfaces, the general solution formulation of N-layered transversely isotropic piezoelectric media is given. A selected set of numerical solutions is presented for a layered semi-infinite piezoelectric solid.  相似文献   

14.
Using the hypersingular integral equation method based on body force method, a planar crack in a three-dimensional transversely isotropic piezoelectric solid under mechanical and electrical loads is analyzed. This crack problem is reduced to solve a set of hypersingular integral equations. Compare with the crack problems in elastic isotropic materials, it is shown that for the impermeable crack, the intensity factors for piezoelectric materials can be obtained from those for elastic isotropic materials. Based on the exact analytical solution of the singular stresses and electrical displacements near the crack front, the numerical method of the hypersingular integral equation is proposed by the finite-part integral method and boundary element method, which the square root models of the displacement and electric potential discontinuities in elements near the crack front are applied. Finally, the numerical solutions of the stress and electric field intensity factors of some examples are given.  相似文献   

15.
Frictionless indentation responses of transversely isotropic piezoelectric film/rigid substrate systems under circular cylindrical indenter (i.e., punch), conical indenter (i.e., cone), and spherical indenter (i.e., sphere) are investigated. Both insulating and conducting indenters are considered. The technique of Hankel transformation is employed to derive the corresponding dual integral equations for the mixed boundary value indentation problems. For the two limiting cases of infinitely thick and infinitely thin piezoelectric films, closed-form solutions are obtained. For piezoelectric films of finite thickness, a numerical method is constructed to solve the dual integral equations and semi-empirical models having only two unknown parameters are proposed for the responses of indentation force, electric charge and electric potential, and contact radius. With the two parameters inferred from the numerical results, the semi-empirical formulae are found to provide good estimates of the indentation responses for the two limiting cases of infinitely thick and thin piezoelectric films, as well as those in between. The inferred parameters in the proposed semi-empirical formulae for normalized indentation force and electric charge are checked against four different piezoelectric materials and are found to be insensitive to the selection of piezoelectric materials. It is believed that the proposed semi-empirical indentation formulae are useful in developing experimental indentation techniques to extract the material properties of piezoelectric films.  相似文献   

16.
Penny-shaped crack in transversely isotropic piezoelectric materials   总被引:2,自引:0,他引:2  
Using a method of potential functions introduced successively to integrate the field equations of three-dimensional problems for transversely isotropic piezoelectric materials, we obtain the so-called general solution in which the displacement components and electric potential functions are represented by a singular function satisfying some special partial differential equations of 6th order. In order to analyse the mechanical-electric coupling behaviour of penny-shaped crack for above materials, another form of the general solution is obtained under cylindrical coordinate system by introducing three quasi-harmonic functions into the general equations obtained above. It is shown that both the two forms of the general solutions are complete. Furthermore, the mechanical-electric coupling behaviour of penny-shaped crack in transversely isotropic piezoelectric media is analysed under axisymmetric tensile loading case, and the crack-tip stress field and electric displacement field are obtained. The results show that the stress and the electric displacement components near the crack tip have (r −1/2) singularity. The project supported by the Natural Science Foundation of Shaanxi Province, China  相似文献   

17.
The effects of material anisotropy and inhomogeneity on void nucleation and growth in incompressible anisotropic nonlinearly elastic solids are examined. A bifurcation problem is considered for a composite sphere composed of two arbitrary homogeneous incompressible nonlinearly elastic materials which are transversely isotropic about the radial direction, and perfectly bonded across a spherical interface. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the undeformed configuration at sufficiently large loads. Several types of bifurcation are found to occur. Explicit conditions determining the type of bifurcation are established for the general transversely isotropic composite sphere. In particular, if each phase is described by an explicit material model which may be viewed as a generalization of the classic neo-Hookean model to anisotropic materials, phenomena which were not observed for the homogeneous anisotropic sphere nor for the composite neo-Hookean sphere may occur. The stress distribution as well as the possible role of cavitation in preventing interface debonding are also examined for the general composite sphere.  相似文献   

18.
自由端受集中力作用下压电悬臂梁弯曲问题解析解   总被引:5,自引:0,他引:5  
杨德庆  刘正兴 《力学季刊》2003,24(3):327-333
本文对由横观各向同性压电介质构成的悬臂梁,在自由端受集中力作用下的弯曲问题进行了研究。首先根据问题的特点,得到简化的线弹性压电悬臂梁的基本方程。然后根据正交各向异性材料悬臂梁应力分布特点,采用逆解法,建立了该问题的应力函数与电势分布函数,进而得到精确多项式解析解。该解析解形式简单,便于应用。文中对自由端受集中力的常规材料和压电材料悬臂梁的挠度也进行了比较。  相似文献   

19.
采用了在径向极化情况下横观各向同性的线性本构关系,考虑了材料性质沿径向的梯度分布,对功能梯度压电材料圆环在给定的位移和电势边界条件下,导出了问题的一般解.推导了外壁固定、接地,内壁沿垂向有一微小位移、电势为反对称分布问题的解析解,并计算了该问题在位移和电势作用情况下的位移、电势在不同梯度分布时的数值结果.  相似文献   

20.
Summary  A correspondence principle is established between elastic and piezoelectric problems for transversely isotropic materials, in such a way that the knowledge of an elastic solution yields fully coupled electro–elastic fields for the corresponding piezoelectric problem, provided the elastic solution is written in a certain form. The implementation of this principle is illustrated by constructing, in a routine way, several piezoelectric solutions involving crack and punch problems (one of them has not been solved previously). Received 12 Feburary 2002; accepted for publication 29 April 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号