首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The present study concerns an air-filled differentially heated cavity of 1 m × 0.32 m × 1 m (width × depth × height) subject to a temperature difference of 15 K and is motivated by the need to understand the persistent discrepancy observed between numerical and experimental results on thermal stratification in the cavity core. An improved experiment with enhanced metrology was set up and experimental data have been obtained along with the characteristics of the surfaces and materials used. Experimental temperature distributions on the passive walls have been introduced in numerical simulations in order to provide a faithful prediction of experimental data. By means of DNS using spectral methods, heat conduction in the insulating material is first coupled with natural convection in the cavity. As heat conduction influences only the temperature distribution on the top and bottom surfaces and in the near wall regions, surface radiation is added to the coupling of natural convection with heat conduction. The temperature distribution in the cavity is strongly affected by the polycarbonate front and rear walls of the cavity, which are almost black surfaces for low temperature radiation, and also other low emissivity walls. The thermal stratification is considerably weakened by surface radiation. Good agreement between numerical simulations and experiments is observed on both time-averaged fields and turbulent statistics. Treating the full conduction–convection–radiation coupling allowed to confirm that experimental wall temperatures resulted from the coupled phenomena and this is another way to predict correctly the experimental results in the cavity.  相似文献   

2.
Direct contact condensation (DCC) of steam jet in subcooled water flow in a channel was experimentally studied. The main inlet parameters, including steam mass flux, water mass flux and water temperature were tested in the ranges of 200–600 kg/(m2 s), 7–18 × 103 kg/(m2 s), 288–333 K, respectively. Two unstable flow patterns and two stable flow patterns were observed via visualization window by a high speed camera. The flow patterns were determined by steam mass flux, water mass flux and water temperature, and the relationship between flow patterns and flow field parameters was discussed. The results indicated that whether pressure or temperature distributions on the bottom wall of channel could represent different flow patterns. And the position of pressure peak on the bottom wall could almost represent the condensation length. The upper wall pressure distributions were mainly dependent on steam and water mass flux; and the upper wall temperature distributions were affected by the three main inlet parameters. Moreover, the bottom wall pressure and temperature distributions of different unstable flow patterns had similar characteristics while those of stable flow patterns were affected by shock and expansion waves. The underlying cause of transition between different flow patterns under different inlet parameters was reflected and discussed based on pressure distributions.  相似文献   

3.
The problem of the long established thermal stratification discrepancy between numerical and experimental results is investigated in three companion articles. The Part I article establishes reference solutions by means of three-dimensional (3D) spectral direct numerical simulations of a buoyancy-driven flow (RaH = 1.5 × 109). Two configurations of differentially heated air-filled cavity are considered: an idealized cavity (perfectly adiabatic cavity, PAC) and an Intermediate Realistic Cavity (IRC) making use of experimentally measured temperature distributions (Salat, 2004) on its top and bottom walls. The IRC flow structure as well as its associated rms fluctuations correspond to the experimentally observed flow dynamics. However both configurations keep resulting in a core thermal stratification value equal to 1.0 whereas experiments lead to a stratification of about 0.5. It is proved that this stratification paradox is neither related to three-dimensional effects nor to the experimental thermal distributions applied on the horizontal walls. Resolving this stratification discrepancy is the subject of the parts II and III articles (Sergent et al., 2013, Xin et al., 2012).  相似文献   

4.
This paper presents a numerical study of the conjugate heat transfer (natural convection, surface thermal radiation and conduction) in a square cavity with turbulent flow. The cavity has one vertical isothermal wall, two horizontal adiabatic walls and one vertical semitransparent wall with a selective coating applied to the inner side to control the solar radiation transmission. Later on the semitransparent wall is replaced with another one without the selective coating. The mathematical model for the turbulent flow in the cavity was solved using the finite volume method. The system had the following conditions: the uniform temperature in the isothermal wall was 21 °C, the external ambient temperature was fixed at 35 °C and on the semitransparent wall the direct normal solar irradiation of 750 W/m2 was considered constant. The Rayleigh number was varied in the range of 109 ? Ra ? 1012 by changing the lengths of the cavity from 0.70 m to 6.98 m, respectively. The results show that, even though the air temperature of the cavity with the solar control film coating semitransparent wall (case A) is higher compared with the one without solar film coating (case B), the total amount of heat going through the cavity is lower compared to the one going through the cavity without solar control film. The total amount of energy transferred to the air in cavity for the case A was 41.98% less than for the case B. A set of correlations for the Nusselt number was obtained for both cases considering the conjugate heat transfer.  相似文献   

5.
The efficiency of pesticide application to agricultural fields and the resulting environmental contamination highly depend on atmospheric airflow. A computational fluid dynamics (CFD) modelling of airflow within plant canopies using 3D canopy architecture was developed to understand the effect of the canopy to airflow. The model average air velocity was validated using experimental results in a wind tunnel with two artificial model trees of 24 cm height. Mean air velocities and their root mean square (RMS) values were measured on a vertical plane upstream and downstream sides of the trees in the tunnel using 2D hotwire anemometer after imposing a uniform air velocity of 10 m s?1 at the inlet. 3D virtual canopy geometries of the artificial trees were modelled and introduced into a computational fluid domain whereby airflow through the trees was simulated using Reynolds-Averaged Navier–Stokes (RANS) equations and k-ε turbulence model. There was good agreement of the average longitudinal velocity, U between the measurements and the simulation results with relative errors less than 2% for upstream and 8% for downstream sides of the trees. The accuracy of the model prediction for turbulence kinetic energy k and turbulence intensity I was acceptable within the tree height when using a roughness length (y0 = 0.02 mm) for the surface roughness of the tree branches and by applying a source model in a porous sub-domain created around the trees. The approach was applied for full scale orchard trees in the atmospheric boundary layer (ABL) and was compared with previous approaches and works. The simulation in the ABL was made using two groups of full scale orchard trees; short (h = 3 m) with wider branching and long (h = 4 m) with narrow branching. This comparison showed good qualitative agreements on the vertical profiles of U with small local differences as expected due to the spatial disparities in tree architecture. This work was able to show airflow within and above the canopy in 3D in more details.  相似文献   

6.
The understanding of the thermodynamic effects of cavitating flow is crucial for applications like turbopumps for liquid hydrogen LH2 and oxygen LOx in space launcher engines. Experimental studies of this phenomenon are rare as most of them were performed in the 1960s and 1970s. The present study presents time resolved IR (Infra-Red) measurements of thermodynamic effects of cavitating flow in a Venturi nozzle.Developed cavitating flow of hot water (95 °C) was observed at different operating conditions – both conventional high speed visualization and high speed IR thermography were used to evaluate the flow parameters.Both the mean features of the temperature distributions and the dynamics of the temperature field were investigated. As a result of evaporation and consequent latent heat flow in the vicinity of the throat a temperature depression of approximately 0.4 K was measured. In the region of pressure recuperation, where the cavitation structures collapse, the temperature rise of up to 1.4 K was recorded. It was found that the temperature dynamics closely follows the dynamics of cavitation structures.Finally experimental results were compared against a simple model based on the Rayleigh–Plesset equation and the thermal delay theory and plausible agreement was achieved.Experimental data is most valuable for further development of numerical models which are, due to poor ensemble of existing experimental results, still at a very rudimentary level.  相似文献   

7.
The paper gives the results of the DNS/LES which was performed to investigate the transitional and turbulent non-isothermal flows within a rotor/stator cavity. Computations were performed for the cavity of aspect ratio L = 2–35, Rm = 1.8 and for rotational Reynolds numbers up to 290000. The main purpose of the investigations was to analyze the influence of aspect ratio and Reynolds number on the flow structure and heat transfer. The numerical solution is based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approximation. The time scheme is semi-implicit second-order accurate, which combines an implicit treatment of the diffusive terms and an explicit Adams–Bashforth extrapolation for the non-linear convective terms. In the paper we analyze distributions of the Reynolds stress tensor components, the turbulent heat flux tensor components, Nusselt number distributions and the turbulent Prandtl number and other structural parameters, which can be useful for modeling purposes. Selected results are compared with the experimental data obtained for single heated rotating disk by Elkins and Eaton (2000).  相似文献   

8.
An experimental study of a fully developed turbulent channel flow and an adverse pressure gradient (APG) turbulent channel flow over smooth and rough walls has been performed using a particle image velocimetry (PIV) technique. The rough walls comprised two-dimensional square ribs of nominal height, k = 3 mm and pitch, p = 2k, 4k and 8k. It was observed that rib roughness enhanced the drag characteristics, and the degree of enhancement increased with increasing pitch. Similarly, rib roughness significantly increased the level of turbulence production, Reynolds stresses and wall-normal transport of turbulence kinetic energy and Reynolds shear stress well beyond the roughness sublayer. On the contrary, the distributions of the eddy viscosity, mixing length and streamwise transport of turbulence kinetic energy and Reynolds shear stress were reduced by wall roughness, especially in the outer layer. Adverse pressure gradient produced a further reduction in the mean velocity (in comparison to the results obtained in the parallel section) but increased the wall-normal extent across which the mean flow above the ribs is spatially inhomogeneous in the streamwise direction. APG also reinforced wall roughness in augmenting the equivalent sand grain roughness height. The combination of wall roughness and APG significantly increased turbulence production and Reynolds stresses except in the immediate vicinity of the rough walls. The transport velocities of the turbulence kinetic energy and Reynolds shear stress were also augmented by APG across most part of the rough-wall boundary layer. Further, APG enhanced the distributions of the eddy viscosity across most of the boundary layer but reduced the mixing length outside the roughness sublayer.  相似文献   

9.
This paper describes the start-up process of a space activate thermal control system, two-phase mechanically pumped cooling loop (MPCL) with two evaporators, in ground-based testing. Each evaporator has an outer diameter of 3 mm and a length of 10 m and the total loop of the system is about 40 m. In this paper, the system design and work principle as well as the test setup of an MPCL are presented and the start-up processes of the MPCL are studied. The experiments on the start-up processes under different evaporative temperatures were carried out. Tests attention has been paid to the system performance characteristics such as differential pressure, absolute pressure, mass flow rate, main components temperatures and so on. During the start-up processes, the system presents a good stability and each part of the system performs a reasonable temperature wave, except some superheat phenomena in the evaporator which cause a pressure shock to the system. The superheat is mainly related to evaporative temperature and the initial liquid distribution in the evaporator. In general, the lower the evaporative temperature is the higher superheat occurs. When set-point evaporative temperature is ?15 °C, the differential pressure shock can reach 6.23 bar which is as 7.5 times as the stable state. In conclusion, the MPCL with dual-evaporators can be started up successfully and is an effective kind of thermal control technology for future space applications.  相似文献   

10.
Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (ReD = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/θ) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.  相似文献   

11.
In order to obtain the knowledge necessary for developing new effective fire extinguishing technologies, we determined experimentally the gas temperature in the trace of water droplets streamlined by hot air flow. It was important to establish how much the temperature in the droplet trace decreases and how fast it recovery to the initial temperature field after the droplet evaporation. The following parameters were varied: droplet size from 1.3 mm to 1.7 mm, velocity from 1 m/s to 5 m/s, initial airflow temperature from 473 K to 773 K, number of droplets (one or two), and the arrangement of droplets relative to the hot inflow (serial or parallel). The study proves the theoretical hypothesis about a significant influence of evaporation on the temperature in the water droplet trace. When a temperature trace of water droplets is formed, irrespective of their arrangement, the role of the evaporation process strengthens with the gas flow temperature rising. Furthermore, the study specifies typical longitudinal dimensions of the aerodynamic and temperature traces of water droplets. It has been established that when droplets are located in series and in parallel, their combined impact on the temperature and velocity of the gas flow in the medium differs rather considerably.  相似文献   

12.
Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (ReD = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/θ) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.  相似文献   

13.
Temperature fluctuations occur due to thermal mixing of hot and cold streams in the T-junctions of the piping system in nuclear power plants, which may cause thermal fatigue of piping system. In this paper, three-dimensional, unsteady numerical simulations of coolant temperature fluctuations at a mixing T-junction of equal diameter pipes were performed using the large eddy simulation (LES) turbulent model. The experiments used in this paper to benchmark the simulations were performed by Hitachi Ltd. The calculated normalized mean temperatures and fluctuating temperatures are in good agreement with the measurements. The influence of the time-step ranging from 100 Hz to 1000 Hz on the numerical simulation results was explored. The simulation results indicate that all the results with different frequencies agree well with the experimental data. Finally, the attenuation of fluctuation of fluid temperature was also investigated. It is found that, drastic fluctuation occurs within the range of less than L/D = 4.0; the fluctuation of fluid temperature does not always attenuate from the pipe center to the wall due to the continuous generation of vortexes. At the top wall, the position of L/D = 1.5 has a minimum normalized mean temperature and a peak value of root-mean square temperature, whereas at the bottom wall, the position having the same characteristics is L/D = 2.0.  相似文献   

14.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

15.
In general, the shear localization process involves initiation and growth. Initiation is expected to be a stochastic process in material space where anisotropy in the elastic–plastic behavior of single crystals and inter-crystalline interactions serve to form natural perturbations to the material’s local stability. A hat-shaped sample geometry was used to study shear localization growth. It is an axi-symmetric sample with an upper “hat” portion and a lower “brim” portion with the shear zone located between the hat and brim. The shear zone length is 870–890 μm with deformation imposed through a split-Hopkinson pressure bar system at maximum top-to-bottom velocity in the range of 8–25 m/s. We present experimental results of the deformation response of tantalum and 316L stainless steel samples. The tantalum samples did not form shear bands but the stainless steel sample formed a late stage shear band. We have also modeled these experiments using both conductive and adiabatic continuum models. An anisotropic elasto-viscoplastic constitutive model with damage evolution was used within the finite element code EPIC. A Mie-Gruneisen equation of state and the rate and temperature sensitive MTS flow stress model together with a Gurson flow surface were employed. The models performed well in predicting the experimental data. The numerical results for tantalum suggested a maximum equivalent strain rate on the order of 7 × 104 s−1 in the gage section for an imposed top surface displacement rate of 17.5 m/s. The models also suggested that for an initial temperature of 298 K a temperature in the neighborhood of 900 K was reached within the shear section. The numerical results for stainless steel suggest that melting temperature was reached throughout the shear band shortly after peak load. Due to sample geometry, the stress state in the shear zone was not pure shear; a significant normal stress relative to the shear zone basis line was developed.  相似文献   

16.
Large-eddy simulations of flow past a two-dimensional (2D) block were performed to evaluate four subgrid-scale (SGS) models: (i) the traditional Smagorinsky model, (ii) the Lagrangian dynamic model, (iii) the Lagrangian scale-dependent dynamic model, and (iv) the modulated gradient model. An immersed boundary method was employed to simulate the 2D block boundaries on a uniform Cartesian grid. The sensitivity of the simulation results to grid refinement was investigated by using four different grid resolutions. The velocity streamlines and the vertical profiles of the mean velocities and variances were compared with experimental results. The modulated gradient model shows the best overall agreement with the experimental results among the four SGS models. In particular, the flow recirculation, the reattachment position and the vertical profiles are accurately reproduced with a relative coarse grid resolution of (Nx × Ny × Nz=) 160 × 40 × 160 (nx × nz = 13 × 16 covering the block). Besides the modulated gradient model, the Lagrangian scale-dependent dynamic model is also able to give reasonable prediction of the flow statistics with some discrepancies compared with the experimental results. Relatively poor performance by the Lagrangian dynamic model and the Smagorinsky model is observed, with simulated recirculating patterns that differ from the measured ones. Analysis of the turbulence kinetic energy (TKE) budget in this flow shows evidence of a strong production of TKE in the shear layer that forms as the flow is deflected around the block.  相似文献   

17.
In the present paper, static bending problem of the electroelasticity for an inhomogeneous cylinder of finite length with sliding fixed end-supports is investigated. The given boundary value problem is reduced to a system of 12 k (k = 1, 2, …) integro-differential equations. Expressions for the components characterizing the state of stress for the inhomogeneous cylinder are presented. Based on the developed analytical algorithm, extensive numerical investigations associated with the stress analysis of an inhomogeneous piezoceramic cylinder have been conducted. The results of these investigations are illustrated graphically, demonstrating the stress distributions in piezoceramic circular and elliptical cylinders with inclusions of various geometries.  相似文献   

18.
This paper presents and analyzes the behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles. The relevance of this material resides in the potential transformation of retained austenite to martensite during impact loading. This process leads to an increase in strength and ductility of the material. However, this transformation takes place only under certain loading conditions strongly dependent on the initial temperature and deformation rate. In order to study the material behaviour under impact loading, perforation tests have been performed using a drop weight tower. Experiments were carried out at two different initial temperatures T0 = 213 K and T0 = 288 K, and within the range of impact velocities 2.5 m/s ? V0 ? 4.5 m/s. The experimental setup enabled the measuring of impact velocity, residual velocity, load-time history and failure mode. In addition, dry and lubricated contacts between the striker and the plate have been investigated. Finally, by using X-ray diffraction it has been shown that no martensitic transformation takes place during the perforation process. The causes involving the none-appearance of martensite are examined.  相似文献   

19.
Pure Ni nanoparticles ranging in size from 24 to 200 nm are prepared via thermal decomposition of nickel acetylacetonate in oleylamine. The as-prepared Ni particles change from spherical to dendritic or starlike with increasing precursor concentration. The particles are stable because the organic coating occurs in situ. Magnetic measurement reveals that all the Ni nanoparticles are ferromagnetic and show ferromagnetic–paramagnetic transitions at their Curie points. The saturation magnetization Ms is size-dependent, with a maximum value of 52.01 and 82.31 emu/g at room temperature and 5 K, respectively. The coercivity decreases at first and then increases with increasing particle size, which is attributed to the competition between size effect and shape anisotropy. The Curie temperature Tc is 593, 612, 622, 626 and 627 K for the 24, 50, 96, 165 and 200 nm Ni nanoparticles, respectively. A theoretical model is proposed to explain the size-dependence of Ni nanoparticle Curie temperature.  相似文献   

20.
Boiling/evaporation heat transfer in a microchannel with pin fin structure was performed with water as the working fluid. Simultaneous measurements of various parameters were performed. The chip wall temperatures were measured by a high spatial-time resolution IR image system, having a sensitivity of 0.02 °C. The flow pattern variations synchronously changed wall temperatures due to ultra-small Bi number. The wavelet decomposition method successfully identified the noise signal and decoupled various temperature oscillations with different amplitudes and frequencies. Three types of temperature oscillations were identified according to heat flux q and mass flux G. The first type of oscillation occurred at q/G < 0.62 kJ/kg. The approximation coefficient of wavelet decomposition decided the dominant cycle period which was ∼3 times of the fluid residence time in the microchannel, behaving the density wave oscillation characteristic. The detail coefficients of wavelet decomposition decided the dominant cycle period, which matched the flow pattern transition determined value well, representing the flow pattern transition induced oscillation. For the second type of oscillation, the wavelet decomposition decoupled the three oscillation mechanisms. The pressure drop oscillation caused the temperature oscillation amplitudes of 5–10 °C and cycle periods of 10–15 s. The density wave oscillation and flow pattern transition induced oscillation are embedded with both the pressure rise and decrease stages of the pressure drop oscillation. The third type of oscillation happened at q/G > 1.13 kJ/kg, having the density wave oscillation coupled with the varied liquid film evaporation induced oscillation. The liquid island, retention bubble induced nucleation sites and cone-shape two-phase developing region are unique features of microchannel boiling with pin fin structure. This study illustrated that pressure drop oscillation and density wave oscillation, usually happened in large size channels, also take place in microchannels. The flow pattern transition and varied liquid film evaporation induced oscillations are specific to microchannel boiling/evaporation flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号