首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method of statistical modeling the flow in the boundary-layer transition region is proposed on the basis of experimental data on kinematics and dynamics of turbulent spots (Emmons spots) on a flat plate in an incompressible fluid. This method allows one to determine the intermittency with allowance for overlapping of the spots, the forces on the plate surface, and the flow field in the vicinity of the transition region if the field of the streamwise component of the mean velocity in the developed turbulent boundary layer is known as a function of the Reynolds number. In contrast to multi-parameter models of the transition, this approach makes it possible to avoid the use of physically meaningless parameter values.  相似文献   

2.
受轴向基础激励悬臂梁非线性动力学建模及周期振动   总被引:2,自引:0,他引:2  
针对轴向基础激励的悬臂梁,基于Kane方程建立了含几何非线性及惯性非线性相互耦合项的动力学方程,采用多尺度法研究了梁的主参激共振响应。研究结果表明,梁的非线性惯性项具有软特性效应,对系统二阶及以上模态产生显著影响;而梁的非线性几何项具有硬特性效应,主宰了系统的一阶模态响应。将文中结果与同类研究进行比较,取得了很好的一致性,从一个侧面验证了建模方法的正确性。  相似文献   

3.
赵旋  张伟伟  邓子辰 《力学学报》2022,54(9):2616-2626
气动外形优化设计与飞行器性能分析中, 直接运用数值模拟或风洞实验获取气动力的成本高, 构建代理模型是提高外形优化和性能分析效率的重要途径. 然而, 构建模型的过程中, 研究者只关注积分后的气动力和力矩信息. 本文通过充分利用采样过程中所产生的压力分布信息, 来提高建模的精度和泛化性, 进而降低样本获取的成本. 提出了一种小样本框架下融入压力分布信息的气动力建模方法, 首先通过数值模拟或风洞试验获得不同流动参数状态下翼型表面的压力分布信息和气动系数, 其次通过本征正交分解技术对压力分布信息进行特征提取, 获取不同输入参数状态下压力分布信息对应的POD系数, 之后结合输入参数通过Kriging算法对压力分布信息进行建模, 将压力分布信息积分得到低精度气动系数的预测模型, 最后低精度气动系数结合输入参数通过Kriging算法构造高精度的气动系数预测模型. 通过同状态变翼型算例以及CAS350翼型变状态算例进行验证, 该方法相比于传统的克里金模型直接预测气动力, 有效提高了气动力的预测精度和模型的鲁棒性, 同时缩小了学习样本的数据量.   相似文献   

4.
王晓亮  单雪雄 《力学季刊》2005,26(3):381-388
进入21世纪以来,随着科技的飞速发展,世界上掀起了研究和开发平流层平台的热潮。飞艇作为平流层平台可以实现无线通信、空间观测、大气测量以及军事侦查等目的。本文首先将飞艇所受的气动力分成由于来流速度产生的定常气动力和飞艇转动引起的非定常气动力两部分,通过理论分析建立了飞艇的气动力模型,从而得到需要辨识的气动参数。其次建立了以浮心为原点的六自由度非线性动力学模型和一种基于混合遗传算法的气动力系数辨识方法——混合遗传算法(遗传算法+单纯型法)与极大似然法相结合的方法,并利用该方法对飞艇的气动参数进行辨识。通过仿真结果验证了该方法实用性和有效性。最后通过对气动参数的准确值与辨识值的分析比较,得出各个参数对飞艇运动性能的影响情况。  相似文献   

5.
Dynamic modeling of a cantilever beam under an axial movement of its basement is presented. The dynamic equation of motion for the cantilever beam is established by using Kane's equation first and then simplified through the Rayleigh-Ritz method. Compared with the older modeling method, which linearizes the generalized inertia forces and the generalized active forces, the present modeling takes the coupled cubic nonlinearities of geometrical and inertial types into consideration. The method of multiple scales is used to directly solve the nonlinear differential equations and to derive the nonlinear modulation equation for the principal parametric resonance. The results show that the nonlinear inertia terms produce a softening effect and play a significant role in the planar response of the second mode and the higher ones. On the other hand, the nonlinear geometric terms produce a hardening effect and dominate the planar response of the first mode. The validity of the present modeling is clarified through the comparisons of its coefficients with those experimentally verified in previous studies. Project supported by the Fundamental Fund of National Defense of China (No. 10172005).  相似文献   

6.
Two methods of fluid–structure coupling for turbomachinery are presented, the first one in the frequency domain and the second in both frequency and time domains. In both methods, the structure and the fluid are assumed to have circumferential cyclic symmetric properties and the unsteady aerodynamic forces are assumed to be linear in terms of the structural displacements. The motion equation of the reference sector in the travelling wave coordinates is projected on the complex eigenmodes for each phase number. The generalized unsteady aerodynamic forces are computed by solving the Euler equations and by assuming the structural motion to be harmonic with a constant phase angle between two adjacent sectors. In the frequency domain, the complex, nonlinear eigenvalue problem for the aeroelastic stability analysis is solved iteratively either by the double scanning method or by using Karpel's minimum state smoothing of the aerodynamic coefficient matrix. In the time domain, Karpel's smoothing method is used to obtain an approximation of the generalized unsteady aerodynamic forces by means of auxiliary state variables. These coupling methods are tested on a compressor blade row and the good agreement obtained between their results and those of the direct coupling method shows that the proposed numerical methods, already used in aircraft applications, are adapted to turbomachinery.  相似文献   

7.
The aeroelastic stability of rotating beams with elastic restraints is investigated. The coupled bending-torsional Euler-Bernoulli beam and Timoshenko beam models are adopted for the structural modeling. The Greenberg aerodynamic model is used to describe the unsteady aerodynamic forces. The additional centrifugal stiffness effect and elastic boundary conditions are considered in the form of potential energy. A modified Fourier series method is used to assume the displacement field function and solve the governing equation. The convergence and accuracy of the method are verified by comparison of numerical results. Then, the flutter analysis of the rotating beam structure is carried out, and the critical rotational velocity of the flutter is predicted. The results show that the elastic boundary reduces the critical flutter velocity of the rotating beam, and the elastic range of torsional spring is larger than the elastic range of linear spring.  相似文献   

8.
张家铭  杨执钧  黄锐 《力学学报》2020,52(1):150-161
高维、非线性气动弹性系统的模型降阶是当前气动弹性力学与控制领域的研究热点之一.然而国内外现有的非线性模型降阶方法仍存在辨识算法复杂、精度有待提高等问题.本研究提出了一种基于非线性状态空间辨识的跨音速气动弹性模型降阶方法. 首先,该方法基于非定常空气动力的单位脉冲响应数据,采用特征系统实现算法对非线性状态空间模型的线性动力学部分进行系统辨识. 其次,引入状态和控制输入的非线性函数, 采用优化算法对非线性函数的系数矩阵进行优化,进而得到考虑非线性效应的空气动力降阶模型.为了验证该降阶模型在预测跨音速气动弹性力学行为的精确性,本文以三维机翼为研究对象,分别从基于非线性降阶模型的气动力辨识、跨声速颤振边界计算和极限环振荡预测三方面进行了算例验证,并与现有的模型降阶方法进行了对比, 进一步说明本文所提出方法的有效性.研究结果表明, 该降阶模型对上述三类问题的计算精度与直接流-固耦合方法相吻合,可用于高效预测飞行器跨声速气动弹性力学行为.   相似文献   

9.
A nonlinear aeroelastic analysis method for large horizontal wind turbines is described. A vortex wake method and a nonlinear finite element method (FEM) are coupled in the approach. The vortex wake method is used to predict wind turbine aerodynamic loads of a wind turbine, and a three-dimensional (3D) shell model is built for the rotor. Average aerodynamic forces along the azimuth are applied to the structural model, and the nonlinear static aeroelastic behaviors are computed. The wind rotor modes are obtained at the static aeroelastic status by linearizing the coupled equations. The static aeroelastic performance and dynamic aeroelastic responses are calculated for the NH1500 wind turbine. The results show that structural geometrical nonlinearities significantly reduce displacements and vibration amplitudes of the wind turbine blades. Therefore, structural geometrical nonlinearities cannot be neglected both in the static aeroelastic analysis and dynamic aeroelastic analysis.  相似文献   

10.
斜拉桥三维拉索风雨激振准两自由度模型   总被引:3,自引:0,他引:3  
顾明  杜晓庆 《力学季刊》2004,25(4):496-501
拉索风雨激振是当前桥梁工程和风工程界非常关注的研究课题。过去用于测量带人工水线的拉索模型都是二维的,所建立的理论模型也是建立在二维拉索气动力的基础上的。本文基于带人工水线三维拉索模型试验得到的气动力,建立了三维拉索风雨激振的准二自由度运动微分方程,讨论了运动方程中各种参数的取值,采用数值求解方法计算了拉索风雨激振振幅。计算结果和三维拉索人工降雨试验结果的对比表明,本文方法能较好地描述三维拉索风雨激振的特征。  相似文献   

11.
The generalized aerodynamic force (GAF) matrix is derived for the Unsteady Vortex Lattice Method (UVLM) without the assumption of out-of-plane dynamics. As a result, the approach naturally includes in-plane motion and forces unlike the doublet lattice method (DLM). The derived UVLM GAF is therefore applicable to industry-standard techniques for aeroelastic stability analyses, such as the p–k method. In this work, the fluid–structure interpolation is performed with radial basis functions for surface interpolation. The generalized aerodynamic forces computed with the UVLM are verified against the DLM from NASTRAN on a simple flat plate configuration. The ability of the UVLM to include steady loads is verified with a T-tail flutter case and the results confirm the importance of including steady loads for T-tail flutter analysis. The modal frequency domain VLM therefore provides the same level of efficiency and accuracy than the DLM, but without the restrictions and with the ability to handle complex geometries. It is therefore a viable replacement to the DLM.  相似文献   

12.
Terze  Zdravko  Pandža  Viktor  Andrić  Marijan  Zlatar  Dario 《Nonlinear dynamics》2022,109(2):975-987

Insect flight research is propelled by their unmatched flight capabilities. However, complex underlying aerodynamic phenomena make computational modeling of insect-type flapping flight a challenging task, limiting our ability in understanding insect flight and producing aerial vehicles exploiting same aerodynamic phenomena. To this end, novel mid-fidelity approach to modeling insect-type flapping vehicles is proposed. The approach is computationally efficient enough to be used within optimal design and optimal control loops, while not requiring experimental data for fitting model parameters, as opposed to widely used quasi-steady aerodynamic models. The proposed algorithm is based on Helmholtz–Hodge decomposition of fluid velocity into curl-free and divergence-free parts. Curl-free flow is used to accurately model added inertia effects (in almost exact manner), while expressing system dynamics by using wing variables only, after employing symplectic reduction of the coupled wing-fluid system at zero level of vorticity (thus reducing out fluid variables in the process). To this end, all terms in the coupled body-fluid system equations of motion are taken into account, including often neglected terms related to the changing nature of the added inertia matrix (opposed to the constant nature of rigid body mass and inertia matrix). On the other hand—in order to model flapping wing system vorticity effects—divergence-free part of the flow is modeled by a wake of point vortices shed from both leading (characteristic for insect flight) and trailing wing edges. The approach is evaluated for a numerical case involving fruit fly hovering, while quasi-steady aerodynamic model is used as benchmark tool with experimentally validated parameters for the selected test case. The results indicate that the proposed approach is capable of mid-fidelity accurate calculation of aerodynamic loads on the insect-type flapping wings.

  相似文献   

13.
The influences of steady aerodynamic loads on hunting stability of high-speed railway vehicles were investigated in this study.A mechanism is suggested to explain the change of hunting behavior due to actions of aerodynamic loads:the aerodynamic loads can change the position of vehicle system(consequently the contact relations),the wheel/rail normal contact forces,the gravitational restoring forces/moments and the creep forces/moments.A mathematical model for hunting stability incorporating such influences was developed.A computer program capable of incorporating the effects of aerodynamic loads based on the model was written,and the critical speeds were calculated using this program.The dependences of linear and nonlinear critical speeds on suspension parameters considering aerodynamic loads were analyzed by using the orthogonal test method,the results were also compared with the situations without aerodynamic loads.It is shown that the most dominant factors a ff ecting linear and nonlinear critical speeds are different whether the aerodynamic loads considered or not.The damping of yaw damper is the most dominant influencing factor for linear critical speeds,while the damping of lateral damper is most dominant for nonlinear ones.When the influences of aerodynamic loads are considered,the linear critical speeds decrease with the rise of cross wind velocity,whereas it is not the case for the nonlinear critical speeds.The variation trends of critical speeds with suspension parameters can be significantly changed by aerodynamic loads.Combined actions of aerodynamic loads and suspension parameters also a ff ect the critical speeds.The effects of such joint action are more obvious for nonlinear critical speeds.  相似文献   

14.
Stability analysis of a cantilevered pipe with an inclined terminal nozzle as well as simultaneous internal and external fluid flows is investigated in this study. The pipe is embedded in an aerodynamic cover with negligible mass and stiffness simply to streamline the external flow and avoid vortex induced vibrations. The structure of pipe is modeled as an Euler–Bernoulli beam and effects of internal fluid flow including flow-induced inertia, Coriolis and centrifugal forces and the follower force induced by the exhausting jet are taken into account. In addition, neglecting the compressibility effect and using the unsteady Wagner model, aerodynamic loading is determined as a distributed lateral load for any generic structural state. The integral form of coupled equations of motion are obtained using the Hamilton’s principle. Solution to the coupled flexural–torsional equations of motion is realized via the extended Galerkin method. After discretization of the equations of motion, an eigenvalue representation of the problem is obtained. Several parameter studies are then conducted to examine the effects of concurrent fluid flows and other related parameters on the stability margins of the system.  相似文献   

15.
This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler–Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulation yields nonlinear integro-differentials aeroelastic equations. Using the Galerkin’s method and a mode summation technique, the governing equations will be solved by introducing a numerical method without the need to adding any aerodynamic state space variables and the corresponding equations related to these variables of the problem. The obtained equations are solved to predict the aeroelastic response of the problem. The obtained results for a test case are compared with those of some other works and show a good agreement between results.  相似文献   

16.
Nonlinear airship aeroelasticity   总被引:8,自引:0,他引:8  
The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.  相似文献   

17.
Some high-speed marine vehicles utilize wings operating in the air but in close proximity to the water. At small clearances under the wings, and with augmentation of the incident airflow by front air-based propulsors, water surface deformations can influence the aerodynamic characteristics of such lifting surfaces. A dynamic model is developed in this paper for unsteady forces on a two-dimensional ram wing. The current model is based on the extreme-ground-effect theory for airflow and a linearized potential flow theory for water surface deformations. Parametric results are presented for aerodynamic characteristics of a flat plate, including a static lift coefficient, sensitivity on height, and added mass and damping coefficients in heaving motions. Variable parameters include relative speed, airflow augmentation, and frequency and amplitude of heaving oscillations. The developed method can be applied for more general dynamic modeling of high-speed air-supported marine craft.  相似文献   

18.
安装固定气动翼板的大跨桥梁抖振分析   总被引:1,自引:0,他引:1  
刘高  林家浩  王秀伟 《力学学报》2003,35(5):628-633
建立了安装固定气动翼板的大跨桥梁多模态耦合抖振分析框架,推演了作用在整个桥梁-气动翼板系统上的抖振力和自激力的显式表达式,考虑了多模态耦合效应.基于有限元法,作用在主梁-气动翼板系统上的抖振力转化为节点力,进一步得到作用在整个桥梁上的抖振力并导出了其功率谱密度矩阵;作用在主梁.气动翼板系统上的气弹自激力转化为节点力,并将其表达为气弹刚度矩阵和气弹阻尼矩阵.通过组集得到系统的运动方程,然后运用虚拟激励法在频域计算系统的抖振响应.以某大跨斜拉桥为例进行研究,结果表明:在主梁下方安装-对固定气动翼板后,主梁的扭转角位移、角加速度以及侧向加速度响应能够得到有效控制。  相似文献   

19.
20.
A reduced-order model (ROM) is presented based on Fourier method for flow to predict aerodynamic forces of blades subjected to periodic time-varying upstream wakes. In the method, a time-varying wake is decomposed into harmonic waves by fast Fourier transformation. Using the Fourier method for flow and neglecting the cross-coupling between harmonics, the aerodynamic forces caused by the wake are represented by a linear combination of harmonics with the same frequencies as the wake. The coefficients of the aerodynamic force harmonics are interpolated at the per-fitted curves of the normalized Fourier coefficients (coefficients of aerodynamic forces harmonics corresponding to a unit simple harmonic excitation)–frequency relationship. A blade example is used to show the ability of the proposed method. The results indicate that the ROM method can predict the aerodynamic forces of blades caused by wakes efficiently and accurately. The amplitude levels of wakes have a linear impact on the accuracy of the ROM. Neglecting the higher-order cross-coupling between the harmonics in the ROM method is acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号