首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear vibration analysis of a simply supported functionally graded rectangular plate with a through-width surface crack is presented in this paper. The plate is subjected to a transverse excitation force. Material properties are graded in the thickness direction according to exponential distributions. The cracked plate is treated as an assembly of two sub-plates connected by a rotational spring at the cracked section whose stiffness is calculated through stress intensity factor. Based on Reddy’s third-order shear deformation plate theory, the nonlinear governing equations of motion for the FGM plate are derived by using the Hamilton’s principle. The deflection of each sub-plate is assumed to be a combination of the first two mode shape functions with unknown constants to be determined from boundary and compatibility conditions. The Galerkin’s method is then utilized to convert the governing equations to a two-degree-of-freedom nonlinear system including quadratic and cubic nonlinear terms under the external excitation, which is numerically solved to obtain the nonlinear responses of cracked FGM rectangular plates. The influences of material property gradient, crack depth, crack location and plate thickness ratio on the vibration frequencies and transient response of the surface-racked FGM plate are discussed in detail through a parametric study.  相似文献   

2.
基于物理中面和一阶剪切变形板理论,研究了不同边界条件下功能梯度材料(FGM)中厚板的自由振动问题.假设功能梯度板的材料性质沿厚度方向按幂函数规律连续变化.根据哈密顿原理建立了FGM板有限元形式的自由振动方程,利用MATLAB软件编写程序进行了计算.通过数值算例,讨论了不同边界条件下FGM中厚板的无量纲频率随材料梯度指数和厚宽比的变化情况,并与经典板理论下的频率进行了比较.  相似文献   

3.
李世荣 《力学学报》2022,54(6):1601-1612
功能梯度材料微板谐振器热弹性阻尼的建模和预测是此类新型谐振器热?弹耦合振动响应的新课题. 本文采用数学分析方法研究了四边简支功能梯度材料中厚度矩形微板的热弹性阻尼. 基于明德林中厚板理论和单向耦合热传导理论建立了材料性质沿着厚度连续变化的功能梯度微板热弹性自由振动控制微分方程. 在上下表面绝热边界条件下采用分层均匀化方法求解变系数热传导方程, 获得了用变形几何量表示的变温场的解析解. 从而将包含热弯曲内力的结构振动方程转化为只包含挠度振幅的偏微分方程. 然后,利用特征值问题在数学上的相似性,求得了四边简支条件下功能梯度材料明德林矩形微板的复频率解析解, 进而利用复频率法获得了反映谐振器热弹性阻尼水平的逆品质因子. 最后, 给出了材料性质沿板厚按幂函数变化的陶瓷?金属组分功能梯度矩形微板的热弹性阻尼数值结果. 定量地分析了横向剪切变形、材料梯度变化以及几何参数对热弹性阻尼的影响规律. 结果表明, 采用明德林板理论预测的热弹性阻尼值小于基尔霍夫板理论的预测结果, 而且两者的差别随着相对厚度的增大而变得显著.   相似文献   

4.
利用粘弹性微分型本构关系和薄板理论,对线性变厚度粘弹性矩形薄板建立了在切向均布随从力作用下的运动微分方程,采用微分求积法研究了在随从力作用下线性变厚度粘弹性矩形薄板的稳定性问题,具体对对边简支对边固支和三边简支一边固支条件下体变为弹性、畸变服从Kelvin-Voigt模型的变厚度粘弹性矩形板在随从力下的广义特征值问题进行了求解,分析了薄板的长宽比、厚度比及材料的无量纲延滞时间的变化对随从力作用下矩形薄板的失稳形式及相应的临界荷载的影响.  相似文献   

5.
The direct separation of variables is used to obtain the closed-form solutions for the free vibrations of rectangular Mindlin plates. Three different characteristic equations are derived by using three different methods. It is found that the deflection can be expressed by means of the four characteristic roots and the two rotations should be expressed by all the six characteristic roots,which is the particularity of Mindlin plate theory. And the closed-form solutions,which satisfy two of the three governing equations and all boundary conditions and are accurate for rectangular plates with moderate thickness,are derived for any combinations of simply supported and clamped edges. The free edges can also be dealt with if the other pair of opposite edges is simply supported. The present results agree well with results published previously by other methods for different aspect ratios and relative thickness.  相似文献   

6.
本文采用胡海昌教授提出的厚板方程,并用作者所提出的滑支边和广义滑支边的概念,再加上广义简支边的概念,用叠加法求解两邻边自由另两边任意支撑的矩形厚板静力问题一般解。  相似文献   

7.
The bifurcation and chaos of a clamped circular functionally graded plate is investigated. Considered the geometrically nonlinear relations and the temperature-dependent properties of the materials, the nonlinear partial differential equations of FGM plate subjected to transverse harmonic excitation and thermal load are derived. The Duffing nonlinear forced vibration equation is deduced by using Galerkin method and a multiscale method is used to obtain the bifurcation equation. According to singularity theory, the universal unfolding problem of the bifurcation equation is studied and the bifurcation diagrams are plotted under some conditions for unfolding parameters. Numerical simulation of the dynamic bifurcations of the FGM plate is carried out. The influence of the period doubling bifurcation and chaotic motion with the change of an external excitation are discussed.  相似文献   

8.
Transverse vibration characteristics of axially moving viscoelastic plate   总被引:4,自引:0,他引:4  
The dynamic characteristics and stability of axially moving viscoelastic rect- angular thin plate are investigated.Based on the two dimensional viscoelastic differential constitutive relation,the differential equations of motion of the axially moving viscoelastic plate are established.Dimensionless complex frequencies of an axially moving viscoelastic plate with four edges simply supported,two opposite edges simply supported and other two edges clamped are calculated by the differential quadrature method.The effects of the aspect ratio,moving speed and dimensionless delay time of the material on the trans- verse vibration and stability of the axially moving viscoelastic plate are analyzed.  相似文献   

9.
针对陶瓷-金属功能梯度圆板,同时考虑几何非线性、材料物性参数随温度变化且材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,通过引入位移函数,利用伽辽金方法得到了达芬型非线性动力学方程。利用Melnikov方法,给出了热环境中功能梯度圆板可能发生混沌运动的临界条件。通过数值算例,给出了不同体积分数指数和温度的同宿分岔曲线,平面相图和庞加莱映射图,讨论其对临界条件的影响,证实了系统混沌运动的存在。通过分岔图和与其相对应的最大李雅普诺夫指数图,分析了激励频率和激励幅值对倍周期分岔的影响及变化规律,发现系统可出现周期、倍周期和混沌等复杂动力学响应。  相似文献   

10.
V. Tahouneh  M. H. Naei 《Meccanica》2014,49(1):91-109
This paper is motivated by the lack of studies in the technical literature concerning to the three-dimensional vibration analysis of bi-directional FG rectangular plates resting on two-parameter elastic foundations. The formulations are based on the three-dimensional elasticity theory. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. This paper presents a novel 2-D six-parameter power-law distribution for ceramic volume fraction of 2-D FGM that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. Various material profiles along the thickness and in the in-plane directions are illustrated using the 2-D power-law distribution. The effective material properties at a point are determined in terms of the local volume fractions and the material properties by the Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. Some new results for natural frequencies of the plates are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D FGM.  相似文献   

11.
The effect of thermal gradient on the free vibration of clamped visco-elastic rectangular plate with linearly thickness variations in both the directions has been studied here. The governing differential equation has been solved using Rayleigh-Ritz technique. The frequency equation is derived for the clamped boundary condition on all the four edges. The effect of linear temperature variation has been considered. Deflection and time period corresponding to the first two modes of vibrations of a clamped plate have been computed for various values of aspect ratio, thermal constants, and taper constants.  相似文献   

12.
In this study, the mechanical buckling and free vibration of thick rectangular plates made of functionally graded materials (FGMs) resting on elastic foundation subjected to in-plane loading is considered. The third order shear deformation theory (TSDT) is employed to derive the governing equations. It is assumed that the material properties of FGM plates vary smoothly by distribution of power law across the plate thickness. The elastic foundation is modeled by the Winkler and two-parameter Pasternak type of elastic foundation. Based on the spline finite strip method, the fundamental equations for functionally graded plates are obtained by discretizing the plate into some finite strips. The results are achieved by the minimization of the total potential energy and solving the corresponding eigenvalue problem. The governing equations are solved for FGM plates buckling analysis and free vibration, separately. In addition, numerical results for FGM plates with different boundary conditions have been verified by comparing to the analytical solutions in the literature. Furthermore, the effects of different values of the foundation stiffness parameters on the response of the FGM plates are determined and discussed.  相似文献   

13.
四边固定加劲板的非线性自由振动   总被引:1,自引:0,他引:1  
马牛静  王荣辉 《力学学报》2011,43(5):922-930
针对工程中常用的加劲板, 研究了非线性振动的求解方法与振动特性. 将加劲板分为板与加劲肋两个部分考虑, 其中板视为考虑几何非线性的大挠度板, 加劲肋视为Euler梁. 假定加劲板的位移, 利用Lagrange方程结合系统能量和振型叠加推导了加劲板的动力平衡方程. 运用椭圆函数及摄动法计算加劲板非线性振动的单模态解, 多模态解则通过增量迭代法进行求解. 最后, 结合有限元软件ANSYS对一个四边固定且不可移动的加劲板进行分析, 讨论解的收敛性, 并分析两个方向设置不同数量加劲肋的情况下非线性自振频率与振幅的关系, 得到了一些加劲板非线性振动特性.   相似文献   

14.
热/机械载荷下功能梯度材料矩形厚板的弯曲行为   总被引:5,自引:2,他引:5  
采用Reddy高阶剪切板理论,考虑材料物性参数随坐标和温度变化的特性,研究在均匀变化的温度场内功能梯度材料矩形板在面内与横向载荷共同作用下的横向弯曲问题,基于一维DQ法和Galerkin技术,给出了一对边固支,另对边任意约束时板弯曲问题的半解析解,以Si3N4/SUS304板为例考察了材料组份,温度场,面内载荷及边界约束条件等对功能梯度材料板弯曲行为的影响。  相似文献   

15.
李映辉 《力学季刊》1997,18(4):348-350
本文用积分变换和留数理论得出了对边夹支无限长板受法向荷载的解析解。  相似文献   

16.
In this paper, an exact solution to the governing equations of the bending of a variable-thickness inhomogeneous rectangular plate is presented. The procedure is applicable to variable-thickness inhomogeneous rectangular plates with two opposite edges simply supported. The remaining ones subjected to a combination of clamped, simply supported, and free boundary conditions and between these two edges the plate may have varying thickness. The procedure is valuable in view of the fact that tables of deflections and stresses cannot be presented for variable-thickness inhomogeneous orthotropic plates as for uniform-thickness homogeneous isotropic plates even for commonly encountered loads because the results depend on the inhomogeneity coefficient and the orthotropic material properties instead of a single flexural rigidity. Numerical results, useful for the validation or otherwise of approximate solutions, are tabulated. The influences of the degree of the inhomogeneity, aspect ratio, thickness parameter and degree of non-uniformity on the deflections and stresses are investigated. This paper is partially supported by the Deanship of Scientific Research at King AbdulAziz University (Grant no. 172/427).  相似文献   

17.
R. Lal  Kumar Yajuvindra 《Meccanica》2012,47(1):175-193
Effect of nonhomogeneity on the vibrational characteristics of thin orthotropic rectangular plates of bilinearly varying thickness has been studied using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. The thickness variation is taken as the Cartesian product of linear variations along two concurrent edges of the plate. The orthogonal polynomials in two variables are generated using the Gram-Schmidt process. The nonhomogeneity of the plate material is assumed to arise due to linear variations in Young’s moduli, shear modulus and density of the plate with the in-plane coordinates. Numerical results have been computed for four different combinations of clamped, simply supported and free edges. Effect of thickness variation together with varying values of aspect ratio and nonhomogeneity on the natural frequencies is illustrated for the first three modes of vibration. Three dimensional mode shapes have been presented. Comparison has been made with the known results.  相似文献   

18.
An approach is presented to study the nonlinear forced vibration of a stiffened plate. The stiffened plate is divided into one plate and some stiffeners, with the plate considered to be geometrically nonlinear, and the stiffeners taken as geometrically nonlinear Euler beams. Assuming the displacement of the stiffened plate, Lagrange equation and modal superposition method are used to derive the dynamic equilibrium equations of the stiffened plate according to energy of the system. A stiffened plate with four clamped edges subjected to harmonic excitation is studied by means of the method of multiple scales; the first approximation solutions of the double-modal motion of the system are obtained. Numerical examples for different stiffened plates are presented to discuss the steady response of the primary resonance and the amplitude?Cfrequency relationship; and some nonlinear forced vibration characteristics of the stiffened plate are obtained, which are useful for engineering design.  相似文献   

19.
The large amplitude flexural vibration characteristics of functionally graded material (FGM) plates are investigated here using a shear flexible finite element approach. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of the constituents. The effective material properties are then evaluated based on the rule of mixture. The FGM plate is modeled using the first-order shear deformation theory based on exact neutral surface position and von Kármán’s assumptions for large displacement. The third-order piston theory is employed to evaluate the aerodynamic pressure. The governing equations of motion are solved by harmonic balance method to study the vibration amplitude of FGM plates under supersonic air flow. Thereafter, the non-linear equations of motion are solved using Newmark’s time integration technique to understand the flexural vibration behavior of FGM plates in time domain (simple harmonic or periodic or quasi-periodic). This work is new in the sense that it deals with the non-linear flutter characteristics of FGM plates under high supersonic airflow accounting for both the geometric and aerodynamic non-linearities. Some parametric study is conducted to understand the influence of these non-linearities on the flutter characteristics of FGM plates.  相似文献   

20.
A theoretical model for geometrically nonlinear vibration analysis of thermo-piezoelectrically actuated circular plates made of functionally grade material (FGM) is presented based on Kirchhoff’s–Love hypothesis with von-Karman type geometrical large nonlinear deformations. The material properties of the FG core plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents. Dynamic equations and boundary conditions including thermal, elastic and piezoelectric couplings are formulated and solutions are derived. An exact series expansion method combined with perturbation approach is used to model the nonlinear thermo-electro-mechanical vibration behavior of the structure. Control of the FG plate’s nonlinear deflections and natural frequencies using high control voltages is studied and their nonlinear effects are evaluated. Numerical results for FG plates with various mixtures of ceramic and metal are presented in dimensionless forms. A parametric study is also undertaken to highlight the effects of the thermal environment, applied actuator voltage and material composition of the FG core plate on the nonlinear vibration characteristics of the composite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号