首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In this paper, it is shown that any suitably smooth plane proper-orthogonal tensor field may serve as a finite rotation tensor for generating a deformation field. A basic means is provided for finding the generated deformation. Several examples are presented. A simple method is also explained for constructing a deformation from a prescribed rotation field that takes on specific values on a given curve.  相似文献   

2.
A new method is developed to determine the dominant asymptotic stress and deformation fields near the tip of a Mode-I traction free plane stress crack. The analysis is based on the fully nonlinear equilibrium theory of incompressible hyperelastic solids. We show that the dominant singularity of the near tip stress field is governed by the asymptotic solution of a linear second order ordinary differential equation. Our method is applicable to any hyperelastic material with a smooth work function that depends only on the trace of the Cauchy-Green tensor and is particularly useful for materials that exhibit severe strain hardening. We apply this method to study two types of soft materials: generalized neo-Hookean solids and a solid that hardens exponentially. For the generalized neo-Hookean solids, our method is able to resolve a difficulty in the previous work by Geubelle and Knauss (1994a). Our theoretical results are compared with finite element simulations.  相似文献   

3.
传统键基近场动力学模型存在泊松比限制的问题,为了解决这一问题发展了态基近场动力学模型。其中非常规态的近场动力学模型通过定义非局部的变形梯度将近场力和传统应力关联起来,方便使用传统本构,但是态基近场动力学计算效率低于键基近场动力学。结合态基模型和键基模型的优势,提出键基对应模型,定义了基于键的变形梯度,参考连续介质力学中变形梯度的极分解过程,将键的变形分为转动部分和伸长部分。从而进一步定义了应变,通过物理方程求应力,进而计算键传递的近场力。键基对应模型解决了键基近场动力学的泊松比限制问题,也不需要进行近场动力学微观材料常数的计算。数值算例和理论推导证明了键变形梯度定义以及近场力计算方式的正确性。  相似文献   

4.
齐朝晖  唐立民 《力学学报》1998,30(6):711-718
采用保角转动参数描述了多体系统中的大转动张量.该方法消除了传统的欧拉参数描述所必需的约束方程,并且适于大变形部件的建模需要.利用以上结果建立了含大变形梁状部件的多体系统的力学模型.  相似文献   

5.
The vanishing of Riemann-Christoffel tensor is usually adopt-ed as the compatibility condition of finite deformation.However,we prove in this paper by the method of Cesaro that this condition is necessary but not sufficient for guarantee of a single-valued,continuous displacement field.A new general compatibility condi-tion,based on the theorem of strain-rotation decomposition(Chen[4])is derived.The displacement compatible condition reduces to Saint-Venant's condition when strain and rotation are infinitesimal.  相似文献   

6.
A finite strain constitutive model to predict the deformation behaviour of orthotropic metals is developed in this paper. The important features of this constitutive model are the multiplicative decomposition of the deformation gradient and a new Mandel stress tensor combined with the new stress tensor decomposition generalized into deviatoric and spherical parts. The elastic free energy function and the yield function are defined within an invariant theory by means of the structural tensors. The Hill’s yield criterion is adopted to characterize plastic orthotropy, and the thermally micromechanical-based model, Mechanical Threshold Model (MTS) is used as a referential curve to control the yield surface expansion using an isotropic plastic hardening assumption. The model complexity is further extended by coupling the formulation with the shock equation of state (EOS). The proposed formulation is integrated in the isoclinic configuration and allows for a unique treatment for elastic and plastic anisotropy. The effects of elastic anisotropy are taken into account through the stress tensor decomposition and plastic anisotropy through yield surface defined in the generalized deviatoric plane perpendicular to the generalized pressure. The proposed formulation of this work is implemented into the Lawrence Livermore National Laboratory-DYNA3D code by the modification of several subroutines in the code. The capability of the new constitutive model to capture strain rate and temperature sensitivity is then validated. The final part of this process is a comparison of the results generated by the proposed constitutive model against the available experimental data from both the Plate Impact test and Taylor Cylinder Impact test. A good agreement between experimental and simulation is obtained in each test.  相似文献   

7.
This paper considers the issues related to uniqueness and existence of a finite deformation generated by prescribed right or left Cauchy-Green strain tensor field in the plane. First, the questions of uniqueness and existence to a pre-assigned right strain field C are discussed. It is shown that the existence condition, in the context of continuum mechanics, are naturally posed using the field corresponding to the square root of C instead of C, the latter a classical approach. Then, the corresponding questions for the left strain field are considered, which is more involved. The analysis of uniqueness gives rise to an appropriate classification of the deformation fields. The question of existence is discussed and a complete solution is presented. In both the right and left cases, we stress the techniques for obtaining the corresponding deformation fields.  相似文献   

8.
In a finite deformation at a particle of a continuous body, a triad of infinitesimal material line elements is said to be “unsheared” when the angles between the three pairs of line elements of the triad suffer no change. In a previous paper, it has been shown that there is an infinity of unsheared oblique triads. With each oblique unsheared triad may be associated an “extended polar decomposition” F = QG = HQ of the deformation gradient F, in which Q is a rotation tensor, and G, H are not symmetric. Both G and H have the same real eigenvalues which are the stretches of the elements of the triad. In this paper, a detailed analysis of extended polar decompositions is presented in the case when the finite deformation is that of plane strain. Then, we may deal with a 2 × 2 deformation gradient F′ = QG′ = HQ′ instead of the full 3 × 3 tensor F. In this case, the extended polar decompositions are associated with “unsheared pairs,” i.e., pairs of infinitesimal material line elements in the plane of strain which suffer no change in angle in the deformation. If one arm of an unsheared pair is chosen in the plane of strain, then, in general, its companion in the plane is determined. It follows that all possible extended polar decompositions may then be described in terms of a single parameter, the angle that the chosen arm makes with a coordinate axis in the plane. Explicit expressions for G′ and H′ are obtained, and various special cases are discussed. In particular, we note that the expressions for G′ and H′ remain valid even when the chosen arm is along a “limiting direction,” that is the direction of a line element which has no companion element in the plane forming an unsheared pair with it. The results are illustrated by considering the cases of simple shear and of pure shear.Dedicated to Professor Piero Villaggio as a symbol of our friendship and esteem.  相似文献   

9.
In this paper, the polar decomposition of a deformation gradient tensor is analyzed in detail. The four new methods for polar decomposition computation are given: (1) the iterated method, (2) the principal invariant's method, (3) the principal rotation axis's method, (4) the coordinate transformation's method. The iterated method makes it possible to establish the nonlinear finite element method based on polar decomposition. Furthermore, the material time derivatives of the stretch tensor and the rotation tensor are obtained by explicit and simple expressions. The authors gratefully acknowledge the support rendered by the National Natural Science Foundation of China and the Natural Science Foundation of Jiangxi of China in 1998.  相似文献   

10.
11.
We consider a quarter-plane of compressible hyperelastic material of harmonic-type undergoing finite plane deformations. The plane is subjected to mixed (free–fixed) boundary conditions. In contrast to the analogous case from classical linear elasticity, we find that the deformation field is smooth in the vicinity of the vertex and is actually bounded at the vertex itself. In particular, the normal displacement remains positive eliminating the possibility of material interpenetration. Finally, explicit expressions for Cauchy and Piola stress distributions are obtained in the vicinity of the vertex.  相似文献   

12.
The peridynamic model is a framework for continuum mechanics based on the idea that pairs of particles exert forces on each other across a finite distance. The equation of motion in the peridynamic model is an integro-differential equation. In this paper, a notion of a peridynamic stress tensor derived from nonlocal interactions is defined. At any point in the body, this stress tensor is obtained from the forces within peridynamic bonds that geometrically go through the point. The peridynamic equation of motion can be expressed in terms of this stress tensor, and the result is formally identical to the Cauchy equation of motion in the classical model, even though the classical model is a local theory. We also establish that this stress tensor field is unique in a certain function space compatible with finite element approximations.  相似文献   

13.
14.
Finite element deflection and stress results are presented for four flat plate configurations and are computed using kinematically approximate (rotation tensor, strain tensor or both) non-linear Reissner-Mindlin plate models. The finite element model is based on a mixed variational principle and has both displacement and force field variables. High order interpolation of the field variables is possible through p-type discretization. Results for some of the higher order approximate models are given for what appears to be the first time. It is found that for the class of example problems examined, exact strain tensor but approximate rotation tensor theories can significantly improve the solution over approximate strain tensor models such as the von Kármán and moderate rotation models when moderate deflections/rotations are present. However, for each of the problems examined (with the exception of a postbuckling problem) the von Kármán and moderate rotation model results compared favorably with the higher order models for deflection magnitudes which could be reasonably expected in typical aeroelastic configurations.  相似文献   

15.
Kinematic hardening models describe a specific kind of plastic anisotropy which evolves with the deformation process. It is well known that the extension of constitutive relations from small to finite deformations is not unique. This applies also to well-established kinematic hardening rules like that of Armstrong-Frederick or Chaboche. However, the second law of thermodynamics offers some possibilities for generalizing constitutive equations so that this ambiguity may, in some extent, be moderated. The present paper is concerned with three possible extensions, from small to finite deformations, of the Armstrong-Frederick rule, which are derived as sufficient conditions for the validity of the second law. All three models rely upon the multiplicative decomposition of the deformation gradient tensor into elastic and plastic parts and make use of a yield function expressed in terms of the so-called Mandel stress tensor. In conformity with this approach, the back-stress tensor is defined to be of Mandel stress type as well. In order to compare the properties of the three models, predicted responses for processes with homogeneous and inhomogeneous deformations are discussed. To this end, the models are implemented in a finite element code (ABAQUS).  相似文献   

16.
Hencky's elasticity model is an isotropic, finite hyperelastic equation obtained by simply replacing the Cauchy stress tensor and the infinitesimal strain tensor in the classical Hooke's law for isotropic infinitesimal elasticity with the Kirchhoff stress tensor and Hencky's logarithmic strain tensor. A study by Anand in 1979 and 1986 indicates that it is a realistic finite elasticity model that is in good accord with experimental data for a variety of engineering materials for moderate deformations. Most recently, by virtue of well-founded physical grounds and rigorous mathematical procedures it has been demonstrated by these authors that this model may be essential to achieving self-consistent Eulerian rate type theories of finite inelasticity, e.g., the J 2-flow theory for metal plasticity, etc. Its predictions have been studied for some typical deformation modes, including extension, simple shear and torsion, etc. Here we are concerned with finite bending of a rectangular block. We show that a closed-form solution may be obtained. We present explicit expressions for the bending angle and the bending moment in terms of the maximum or minimum circumferential stretch in a general case of compressible deformations for any assigned stretch normal to the bending plane. In particular, simplified results are derived for the plane strain case and for the case of incompressibility. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Convergence of Peridynamics to Classical Elasticity Theory   总被引:1,自引:0,他引:1  
The peridynamic model of solid mechanics is a nonlocal theory containing a length scale. It is based on direct interactions between points in a continuum separated from each other by a finite distance. The maximum interaction distance provides a length scale for the material model. This paper addresses the question of whether the peridynamic model for an elastic material reproduces the classical local model as this length scale goes to zero. We show that if the motion, constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor field is differentiable, and its divergence represents the force density due to internal forces. The limiting, or collapsed, stress-strain model satisfies the conditions in the classical theory for angular momentum balance, isotropy, objectivity, and hyperelasticity, provided the original peridynamic constitutive model satisfies the appropriate conditions.   相似文献   

18.
The local rigid-body component of continuum deformation is typically characterized by the rotation tensor, obtained from the polar decomposition of the deformation gradient. Beyond its well-known merits, the polar rotation tensor also has a lesser known dynamical inconsistency: it does not satisfy the fundamental superposition principle of rigid-body rotations over adjacent time intervals. As a consequence, the polar rotation diverts from the observed mean material rotation of fibers in fluids, and introduces a purely kinematic memory effect into computed material rotation. Here we derive a generalized polar decomposition for linear processes that yields a unique, dynamically consistent rotation component, the dynamic rotation tensor, for the deformation gradient. The left dynamic stretch tensor is objective, and shares the principal strain values and axes with its classic polar counterpart. Unlike its classic polar counterpart, however, the dynamic stretch tensor evolves in time without spin. The dynamic rotation tensor further decomposes into a spatially constant mean rotation tensor and a dynamically consistent relative rotation tensor that is objective for planar deformations. We also obtain simple expressions for dynamic analogues of Cauchy's mean rotation angle that characterize a deforming body objectively.  相似文献   

19.
Recently these authors have proved [46, 47] that a smooth spin tensor Ωlog can be found such that the stretching tensor D can be exactly written as an objective corotational rate of the Eulerian logarithmic strain measure ln V defined by this spin tensor, and furthermore that in all strain tensor measures only ln V enjoys this favourable property. This spin tensor is called the logarithmic spin and the objective corotational rate of an Eulerian tensor defined by it is called the logarithmic tensor-rate. In this paper, we propose and investigate a hypo-elasticity model based upon the objective corotational rate of the Kirchhoff stress defined by the spin Ωlog, i.e. the logarithmic stress rate. By virtue of the proposed model, we show that the simplest relationship between hypo-elasticity and elasticity can be established, and accordingly that Bernstein's integrability theorem relating hypo-elasticity to elasticity can be substantially simplified. In particular, we show that the simplest form of the proposed model, i.e. the hypo-elasticity model of grade zero, turns out to be integrable to deliver a linear isotropic relation between the Kirchhoff stress and the Eulerian logarithmic strain ln V, and moreover that this simplest model predicts the phenomenon of the known hypo-elastic yield at simple shear deformation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
修正的偶应力线弹性理论及广义线弹性体的有限元方法   总被引:1,自引:0,他引:1  
以含偶应力的弹性理论为基础,考虑小变形情况下变形体的平动变形和旋转变形,提出关于偶应力与曲率张量的线性本构关系,建立一般弹性体的线性模型。为满足有限单元C1连续性要求,考虑转角为独立变量,利用罚方法引入约束条件,构造一般弹性体的约束变分形式。应用8节点48个自由度的实体等参元,建立一般弹性体力学响应分析的有限元方程。对悬臂梁的静力和动力分析表明,一般弹性体模型较之经典弹性力学更适合结构分析;较之Timoshenko梁模型,一般弹性体模型能够计及结构尺度对结构动力特性和动力响应造成的显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号