首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
黄伟其  刘世荣 《中国物理》2004,13(7):1163-1166
We report the investigation on the oxidation behaviour of Si_{1-x}Ge_x alloys (x=0.05, 0.15, and 0.25). It was found for the first time that a nanocap (thickness: 1.6-2.0nm) was formed on the oxide film after fast oxidation. Some new peaks in photoluminescence spectra were discovered, which could be related to the Ge nanocap, the Ge nanolayer (thickness: 0.8-1.2nm) and the Ge nanoparticles (with various diameters from 2.6nm to 7.4nm), respectively. A suitable model and several new calculating formulae combined with the Unrestricted Hartree-Fock-Roothaan (UHFR) method and quantum confinement analysis have been proposed to interpret the PL spectra and the nanostructure mechanism in the oxide and Ge segregation.  相似文献   

2.
We investigate the oxidation behaviour of Si1-xGex alloys(x=0.05,0.15,and 0.25),The oxidation of SiGe films with different compositions was carried out in O2(dry)atmosphere at 800,900 and 1000℃,respectively,for various lengths of time,The thickness and property of the nanoparticle and nanolayer in oxide films and germanium segregation in oxidation of SiGe alloys are measured by using a high precision ellipsometer.The results are in good agreement with the Rutherford backscattering spectrometry,profile dektak instrument and high-resolution scanning transmission electron microscopy.We found that the Ge content in the oxide layer increases with the Ge content in SiGe alloys,and that the Ge content in the oxide film decreases with the increasing oxidation temperature and time,Rejection of Ge results in Piling up of Ge at the interface etween the growing SiO2 and the remaining SiGe,which forms a nanometre Ge-rich layer.Substantial interdiffusion of Si and Ge takes place in the remaining SiGe,which leads to the complicated distribution of Ge segregation.We find a nanometre cap layer over the oxide film after fast oxidation,in which there are many Ge nanoparticles,We analyse the kinetics and mechanism of the nanostructure of the oxide and Ge segregation in oxidation of Si1-xGex alloys.  相似文献   

3.
We perform a comparative st udy on the electroluminescence (EL) and photoluminescence (PL) of Si nanocrystaldoped SiO2 (nc-Si:SiO2) and SiO2, and clarify whether the contribution from Si nanocrystals in the EL of nc-Si:SiO2 truly exists. The results unambiguously indicate the presence of EL of Si nanocrystals. The difference of peak positions between the EL and PL spectra are discussed. It is found that the normal method of passivation to enhance the PL of Si nanocrystals is not equally effective for the EL, hence new methods need to be explored to promote the EL of Si nanocrystals.[第一段]  相似文献   

4.
The effects of annealing temperature on the structural and optical properties of ZnO films grown on Si (100) substrates by sol-gel spin-coating are investigated. The structural and optical properties are characterized by x-ray diffraction, scanning electron microscopy and photoluminescence spectra. X-ray diffraction analysis shows the crystal quality of ZnO films becomes better after annealing at high temperature. The grain size increases with the temperature increasing. It is found that the tensile stress in the plane of ZnO films first increases and then decreases with the annealing temperature increasing, reaching the maximum value of 1.8 GPa at 700℃. PL spectra of ZnO films annealed at various temperatures consists of a near band edge emission around 380 nm and visible emissions due to the electronic defects, which are related to deep level emissions, such as oxide antisite (OZn), interstitial oxygen (Oi), interstitial zinc (Zni) and zinc vacancy (VZn^-), which are generated during annealing process. The evolution of defects is analyzed by PL spectra based on the energy of the electronic transitions.  相似文献   

5.
The surface oxidation of silicon (Si) wafers by atomic oxygen radical anions (O- anions) and the preparation of metal-oxide-semiconductor (MOS) capacitors on the O-oxidized Si substrates have been examined for the first time. The O- anions are generated from a recently developed O- storage-emission material of [Ca24Al2sO64]^4+·4O^- (Cl2A7-O^- for short). After it has been irradiated by an O- anion bean: (0.5 μA/cm^2) at 300℃ for 1-10 hours, the Si wafer achieves an oxide layer with a thickness ranging from 8 to 32 nm. X-ray photoelectron spectroscopy (XPS) results reveal that the oxide layer is of a mixture of SiO2, Si2 O3, and Si2O distributed in different oxidation depths. The features of the MOS capacitor of 〈Al electrode/SiOx/Si〉 are investigated by measuring capacitance-voltage (C - V) and current-voltage (I - V) curves. The oxide charge density is about 6.0 × 10^1 cm^-2 derived from the (C - V curves. The leakage current density is in the order of 10^-6 A/cm^2 below 4 MV/cm, obtained from the I - V curves. The O- anions formed by present method would have potential applications to the oxidation and the surface-modification of materials together with the preparation of semiconductor devices.  相似文献   

6.
The structural evolution during the oxidation process of graphite by a modified Hummers method is investigated. The graphite oxide (GO) composition, disorder parameter, and structures are confirmed by means of x-ray diffraction, Fourier transform infrared spectroscopy, Raman, and scanning electron microscope techniques. Results show that: Hydroxyl, carboxyl and ether groups are present in the low-temperature oxide (at 0℃); and the degree of oxidation is increased with a longer oxidation time. The middle-temperature oxidation (35℃) is a transitory stage with a slight change to the GO structures. While for the high-temperature oxidation (95℃), the hydroxyl, carboxyl and epoxide functional groups are largely originated on the GO flakes. Hydroxyl groups are transformed into more epoxide groups with longer oxidation time, and at the same time, ether groups are eliminated, leading to defects (such as holes) on the GO flakes.  相似文献   

7.
We report fabrication of low-dimensional structures in air by a pulsed laser on SiGe alloy samples in which different oxide structures are formed by laser irradiation and annealing treatment. The micro-structures on SiGe are more complex than those on Si. A series of photolumineseence (PL) emission is observed due to various trap states at the SiGe-SiO2 interface formed under different preparing conditions. The peak centre of PL emission exhibits red=shift from Si to SiGe because of narrower gap. A model for explaining the PL emission is proposed in which the trap states of the interface between some oxide and SiGe play an important role.  相似文献   

8.
A GaN interlayer between low temperature (LT) A1N and high temperature (PIT) A1N is introduced to combine HT AIN, LT A1N and composition-graded A1GaN as a novel buffer layer for GaN films grown on Si (111) substrates. The crystal quality, surface morphology and strain state of the GaN film with this new buffer are compared with those of GaN grown on a conventional buffer structure. By changing the thickness of LT A1N, the crystal quality is optimized and the crack-free GaN film is obtained. The in-plane strain in the GaN film can be changed from tensile to compressive strain with the increase in LT A1N thickness.  相似文献   

9.
We present a new method in which both positive and negative pulses are used to etch silicon for fabrication of porous silicon (PS) monolayer. The optical thickness and morphology of PS monolayer fabricated with different negative pulse voltages are investigated by means of reflectance spectra, scanning electron microscopy and photoluminescence spectra. It is found that with this method the PS monolayer is thicker and more uniform. The micropores also appear to be more regular than those made by common positive pulse etching. This phenomenon is attributed to the vertical etching effect of the PS monolayer being strengthened while lateral etching process is restrained. The explanation we propose is that negative pulse can help the hydrogen cations (H^+) in the electrolyte move into the micropores of PS monolayer. These H^+ ions combine with the Si atoms on the wall of new-formed micropores, leading to formation of Si-H bonds. The formation of Silt bonds results in a hole depletion layer near the micropore wall surface, which decreases hole density on the surface, preventing the micropore wall from being eroded laterally by F^- anions. Therefore during the positive pulse period the etching reaction occurs exclusively only at the bottom of the micropores where lots of holes are provided by the anode.  相似文献   

10.
Room-temperature deposited amorphous silicon nitride (a-SiNx :H) films exhibit intense green light emission after post-treated by plasma oxidation, thermal oxidation and natural oxidation, respectively. All the photoluminescence (PL) spectra are peaked at around 500nm, independent of oxidation method and excitation wavelength. Compared with the PL results from oxidized a-Si:H and as-deposited a-SiNx:H samples, it is indicated that not only oxygen but also nitrogen is of an important role in enhancing light emission from the oxidized a-SiNx:H. Combining the PL results with the analyses of the bonding configurations as well as chemical compositions of the films, the strong green light emission is suggested to be from radiative recombination in luminescent centres related to N Si-O bonds.  相似文献   

11.
The hole subband structures and effective masses of tensile strained Si/Sil-yGey quantum wells are calculated by using the 6 × 6 k·p method. The results show that when the tensile strain is induced in the quantum well, the light-hole state becomes the ground state, and the light hole effective masses in the growth direction are strongly reduced while the in-plane effective masses are considerable. Quantitative calculation of the valence intersubband transition between two light hole states in a 7nm tensile strained Si/Si0.55Ge0.45 quantum well grown on a relaxed Si0.5Ge0.5 (100) substrates shows a large absorption coefficient of 8400 cm^-1.  相似文献   

12.
The feature of conduction band (CB) of Tensile-Strained Si(TS-Si) on a relaxed Si1-xGex substrate is systematically investigated, including the number of equivalent CB edge energy extrema, CB energy minima, the position of the extremal point, and effective mass. Based on an analysis of symmetry under strain, the number of equivalent CB edge energy extrema is presented; Using the K.P method with the help of perturbation theory, dispersion relation near minima of CB bottom energy, derived from the linear deformation potential theory, is determined, from which the parameters, namely, the position of the extremal point, and the longitudinal and transverse masses (m1^* and mt^*)are obtained.  相似文献   

13.
Novel vertical stack HCMOSFET with strained SiGe/Si quantum channel   总被引:3,自引:0,他引:3       下载免费PDF全文
姜涛  张鹤鸣  王伟  胡辉勇  戴显英 《中国物理》2006,15(6):1339-1345
A novel vertical stack heterostructure CMOSFET is investigated, which is structured by strained SiGe/Si with a hole quantum well channel in the compressively strained Sil-xGex layer for p-MOSFET and an electron quantum well channel in the tensile strained Si layer for n-MOSFET. The device possesses several advantages including: 1) the integration of electron quantum well channel with hole quantum well channel into the same vertical layer structure; 2) the gate work function modifiability due to the introduction of poly-SiGe as a gate material; 3) better transistor matching; and 4) flexibility of layout design of CMOSFET by adopting exactly the same material lays for both n-channel and p-channel. The MEDICI simulation result shows that p-MOSFET and n-MOSFET have approximately the same matching threshold voltages. Nice performances are displayed in transfer characteristic, transconductance and cut-off frequency. In addition, its operation as an inverter confirms the CMOSFET structured device to be normal and effective in function.  相似文献   

14.
Two new Group IV element allotropes Si$_{3}$ and Ge$_{3}$ in P6$_{2}$22 phase are predicted in this work and their physical properties are investigated using the density functional theory. Each of the newly predicted allotropes has a super dense structure, which is mechanically, dynamically, and thermodynamically stable, as verified by elastic constants, phonon dispersion spectra and relative enthalpies, respectively. The mechanical anisotropy propertiesare studied in detail by illustrating the directional dependence of Young's modulus, discussing the universal anisotropic index, and calculating shear anisotropy factors together with bulk moduli. It shows that P6$_{2}$22-Si$_{3}$ exhibits the greater anisotropy than P6$_{2}$22-Ge$_{3}$,and interestingly both of the newly predicted crystals appear to be isotropic in the (001) plane. Additionally, the Debye temperature, sound velocities, and the minimum thermal conductivity are examined to evaluate the thermodynamic properties of C$_{3}$, Si$_{3}$, and Ge$_{3}$ in P6$_{2}$22 phase, and the electronic band structures are achieved by HSE06 hybrid functional, which indicate that P6$_{2}$22-C$_{3}$ and -Si$_{3}$ are indirect band gap semiconductors and P6$_{2}$22-Ge$_{3}$ exhibits the metallic feature.  相似文献   

15.
E.Yüzüak  B.Emre  Y.Elerman}  A.Yücel} 《中国物理 B》2010,19(5):57501-057501
The crystal structure,magnetic and magnetocaloric characteristics of the pseduo ternary compounds of Tb5Ge2 xSi2 xMn2x(0 ≤ 2x ≤ 0.1) were investigated by x-ray powder diffraction and magnetization measurements.The x-ray powder diffraction results show that all compounds preserve the monoclinic phase as the majority phase and all the synthesized compounds were observed to be ferromagnetic from magnetization measurements.Magnetic phase transitions were interpreted in terms of Landau theory.Maximum isothermal magnetic entropy change value(20.84 J.kg-1.K-1) was found for Tb5Ge1.95Si1.95Mn0.1 at around 123 K in the magnetic field change of 5 T.  相似文献   

16.
激光照射下的低温氧化生成锗的纳米结构及其特性   总被引:6,自引:0,他引:6       下载免费PDF全文
黄伟其  刘世荣 《物理学报》2005,54(2):972-976
在高精度椭偏仪(HPE)系统中,采用激光照射硅锗合金衬底助氧化的新方法,在SiO2层中生成锗的双纳米面结构;并在样品生长过程中,用HPE同步测量样品的纳米结构. 用Raman光谱仪测量样品的横断面,发现很强的PL发光谱峰. 用量子受限模型和改进的量子从头计算(UHFR)方法分析了PL光谱的结构. 关键词: 高精度椭偏仪 锗的纳米结构 PL光谱 量子受限  相似文献   

17.
符史流  尹涛  柴飞 《中国物理》2007,16(10):3129-3133
Ce^4+-doped Ca2SnO4 with a one-dimensional structure, which emits bright blue light, is prepared by using a solid-state reaction method. The x-ray diffraction results show that the Ce^4+ ions doped in Ca2SnO4 occupy the Sn^4+ sites. The excitation and emission spectra of Ca2Sn1-xCexO4 appear to have broad bands with peaks at - 268nm and -442nm, respectively. A long excited-state lifetime (-83μs) for the emission from Ca2Sn1-xCexO4 suggests that the luminescence originates from a ligand-to-metal Ce^4+ charge transfer (CT). The luminescent properties of Ca2Snl_xCexO4 have been compared with those of Sr2CeO4, which is the only material reported so far to show Ce^4+ CT luminescence. More interestingly, it is observed that the emission intensity of Ca2Sn1-xCexO4 with a small doping concentration (x - 0.03) is comparable to that of Sr2CeO4 in which the concentration of active centre is 100%.  相似文献   

18.
氧化硅层中的锗纳米晶体团簇量子点   总被引:1,自引:0,他引:1       下载免费PDF全文
刘世荣  黄伟其  秦朝建 《物理学报》2006,55(5):2488-2491
采用氧化和析出的方法在氧化硅中凝聚生成锗纳米晶体量子点结构. 其形成的锗晶体团簇没有突出的棱角和支晶结构,锗晶体团簇的轮廓较圆混,故可以用球形量子点模型来模拟实际的锗晶体团簇. 对比了在长时间退火氧化条件下和在短时间退火用激光照射氧化条件下所生成的锗纳米晶体结构的PL光谱和对应的锗纳米晶体团簇的尺寸分布. 短时间退火氧化条件下生成的锗纳米晶体较小(3.28—3.96nm),长时间退火用激光照射氧化条件下所生成的锗纳米晶体较大(3.72—4.98nm);其分布结构显示某些尺寸的锗纳米晶体团簇较稳定,适当的氧化条件可以得到尺寸分布范围较窄的锗纳米晶体团簇. 用量子点受限模型计算了锗纳米晶体团簇的能隙结构,用Monte Carlo方法模拟了PL光谱和对应的锗纳米晶体团簇的尺寸分布,分别与实验结果符合较好. 关键词: 锗晶体团簇 纳米晶体 量子点 激光照射  相似文献   

19.
马忠元 《物理学报》2008,57(1):303-306
Intensive blue photoluminescence (PL) was observed at room temperature from the nanocrystalline-Si/SiO$_{2}$ (nc-Si/SiO$_{2})$ multilayers (MLs) obtained by thermal annealing of SiO/SiO$_{2}$\,MLs for the first time. By controlling the size of nc-Si formed in SiO sublayer from 3.5 to 1.5 nm, the PL peak blueshifts from 457 to 411 nm. Combining the analysis of TEM, Raman and absorption measurement, this paper attributes the blue PL to multiple luminescent centres at the interface of nc-Si and SiO$_{2}$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号