首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
AlGaN/GaN high electron mobility transistor (HEMT) based hydrogen sensors incorporating platinum nanonetworks in the gate region were demonstrated. Pt nanonetworks with 2–3 nm diameter were synthesized by a simple and low-cost solution phase method, and applied to the gate electrode of transistor sensor. The HEMT with physically and electrically connected Pt nanonetwork gate showed good pinch-off and modulation of drain current characteristics. Compared to conventional Pt thin film AlGaN/GaN HEMT sensor, the Pt nanonetwork sensor has dramatically improved current response to hydrogen. Relative current change of Pt nanonetwork gated sensor in 500 ppm H2 balanced with Air ambient was 3.3 × 106% at VGS of ?3.3 V, while 2.5 × 102% at VGS of ?2.9 V for Pt film. This results from large increase in channel conductance induced by huge catalytic surface area of nanostructured Pt networks.  相似文献   

2.
E. Siebert  S. Rosini  R. Bouchet  G. Vitter 《Ionics》2003,9(3-4):168-175
The principle of potentiometric hydrogen sensors based on protonic conductors is reviewed. The origin of the potentiometric response in inert gas (Nernst potential) and in air (mixed potential) is discussed. It is shown that the nature of the sensing electrode as well as the morphology influence the mixed potential response. The properties of the solid-state internal reference electrode are also examined and discussed. A H+ reversible electrode based on quinhydrone is described. Then, an example of solid-state potentiometric hydrogen sensor is presented. The device incorporates a protonic polymer electrolyte based on polybenzimidazole, a Pt gas diffusion electrode or a Pt grid as sensing electrode and a reference electrode based on Ag-AgCl. The sensing characteristics in nitrogen and dry air are reported. Paper presented at the 9th EuroConference on Ionics, Ixia, Rhodes, Greece, Sept. 15 – 21, 2002.  相似文献   

3.
An improved polymer electrolyte membrane (PEM) fuel cell based amperometric hydrogen sensor that operates at room temperature has been developed. The electrolyte used in the sensor is PVA/H3PO4 blend, which is a proton conducting solid polymer electrolyte. A blend of palladium and platinum coated on the membrane is used as anode and platinum as cathode. The sensor functions as a fuel cell, H2/Pd-Pt//PVA-H3PO4//Pt/O2, and the short circuit current is found to be linearly related to the hydrogen concentration. The present study aims at investigating the dependence of sensor behaviour on the anode composition. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

4.
A Nafion based amperometric hydrogen sensor that operates at room temperature has been developed. The electrolyte used in the sensor is Nafion 117, which is a proton conducting solid polymer electrolyte. Palladium catalyst was used on the sensing side and platinum supported on carbon on the air side. The sensor functions as fuel cell, H2/Pd//Nafion//Pt/O2 and the short circuit current is measured. The short circuit current is found to be linear with respect to concentration of hydrogen on the sensing side. The sensor is able to detect the concentration of hydrogen in argon down to ppb level. Details of assembly of the sensor, response behavior and applications are discussed. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

5.
A polymer electrolyte based on the blending of poly(vinylidene fluoride-hexafluoropylene) (PVDF-HFP) and hydroxypropyl methyl cellulose (HPMC) was prepared for the first time. The structure and performance of the gel polymer electrolyte were characterized and measured by X-ray diffraction, Fourier transform infrared, thermogravimetric analysis, scanning electron microscopy, electrochemical impedance spectroscopy, linear sweep voltammetry, and by a charge/discharge test. The results show that the gel polymer electrolyte has the best performance when PVDF-HFP/HPMC ratio (w/w) is 4:1. At room temperature, the ionic conductivity can reach 0.38?×?10?3 S cm?1, the electrochemical stable window is up to 5.0 V (vs. Li/Li+), and the half cell of Li/GPE/LiMn2O4 shows high-discharge-specific capacity and good cycling performance.  相似文献   

6.
A novel electrode having the compositional sequence Si/TiOx/Pt/TiOx was developed for ozone electrogeneration. The spin-coating method, the sputtering deposition technique, and a post-annealing procedure were all combined to assemble the electrode composition. A two-compartment electrolytic cell separated by a Nafion membrane was used to generate ozone galvanostatically. The X-ray photon electron spectroscopy (XPS) and atomic force microscopy (AFM) were used to reveal the electrode composition and morphology. The influence of several factors including the electrode's annealing temperature, the electrolyte composition, and the electrolysis’ current density on the efficiency of ozone production was investigated. A maximum ozone generation efficiency of 2.5% was obtained at 74 mA cm−2 at room temperature. Interestingly, the electrode preserved (ca. 80%) of its original activity to produce ozone after 50 h of continues electrolysis at 74 mA cm−2 at room temperature.  相似文献   

7.
The electro-oxidation of organic molecules at the anode with simultaneous generation of hydrogen at the cathode in electrosynthesis reactors is considered as a promising and efficient process for the co-production of hydrogen and bio-sourced value-added chemicals. In this study and for the first time, we investigated the electro-oxidation of glucose and methylglucoside in 0.1 mol L−1 NaOH on polycrystalline Pt (real surface area = 14.5 ± 0.5 cm2, roughness ≈ 5) in the potential range [0; +1.20 V vs. rhe] under silent and ultrasonic (bath, 45 kHz, Pacous = 11.20 W) conditions. A series of linear sweep voltammograms, chronoamperograms and high-performance liquid chronoamperograms were generated. It was found that higher current densities were obtained under ultrasonic conditions over the potential range of +0.25 V to +1.10 V vs. rhe, indicating that higher oxidation rates were provided under ultrasonication. It was observed that the desorption of species from the Pt surface in the medium potential region was favoured, allowing free catalytic Pt sites for further adsorption and oxidation of reactants; and in the high potential region, high peak current densities in the presence of ultrasound was due to enhanced mass transport of the electroactive species from the bulk electrolyte to the Pt-polycrystalline electrode surface. HPLC studies confirmed that higher electrochemical activity was obtained in the presence of ultrasound than in the absence. In our conditions, it was also found that low frequency ultrasound did not change the selectivity of the glucose and methylglucoside electro-oxidation reactions but instead, a significant increase in the rate of conversion was observed.  相似文献   

8.
We developed new fast proton conducting membranes based on a hybrid inorganic–organic phosphosilicate polymer synthesized from othophosphoric acid, dichlorodimethylsilane, and tetraethoxysilane. The membranes were amorphous, translucent, and flexible. A high concentration of –OH groups and short distances between them promoted fast proton conductivity in dry atmosphere at increased temperatures. The proton conductivity was measured using the electrochemical impedance spectroscopy. Its value increased with rising temperature following the Arrhenius dependence with the activation energy 20 kJ/mol. In dry conditions at 120 °C, the conductivity was 1.6 S/m. The tests in a H2/O2 fuel cell confirmed that the membrane was able to operate at temperatures from 100 to 130 °C using dry input gas streams. The cell performance significantly improved with increasing temperature. The membrane was also tested in a potentiometric gas sensor with the TiHx reference electrode and the Pt sensing electrode. The sensor exhibited fast, stable, and reproducible response to dry H2 and O2 gases at temperatures above 100 °C. We expect the application of our membrane in intermediate temperature fuel cells and gas sensors operating in dry conditions.  相似文献   

9.
The electrodeposition of metallic Copper in binary mixture ionic liquid/organic solvent (tri-n-octylmethylammonium chloride (TOMAC))/chloroform (CHCl3) was investigated. The electrochemical behavior of Cu(II) in TOMAC/CHCl3 at glassy carbon working electrode at room temperature was studied by cyclic voltammetry and spectroscopy impedance. The results from the cyclic voltammetry showed that the electrodeposition of metallic Cu in the binary mixture ionic liquid/organic solvent was an irreversible process and was controlled by the diffusion of Cu(II) on a glassy carbon working electrode. The average value of αnα was found to be 0.23 at 25 °C and the diffusion coefficient (D0) of Cu(II) was calculated to be 7.12 10− 9 cm2/s at room temperature. The performance of TOMAC ionic liquid such as internal resistance has been investigated with electrochemical impedance spectroscopy (EIS). The scanning electron microscopy (SEM) micrographs was used to observe that the copper plating was moderately dense and contains fine crystallites with average sizes of about 1 μm at room temperature. Energy dispersive X-ray analysis (EDAX) profile showed that the obtained film was copper.  相似文献   

10.
Poly(3-methylthiophene) (P3MT)-based porous silicon (PS) substrates were fabricated and characterized by cyclic voltammetry, scanning electron microscopy, and auger electron spectroscopy. After doping urease (Urs) into the polymeric matrix, sensitivity and physicochemical properties of the P3MT-based PS substrate was investigated compared to planar silicon (PLS) and bulk Pt substrates. PS substrate was formed by electrochemical anodization in an etching solution composed of HF, H2O, and ethanol. Subsequently, Ti and Pt thin-films were sputtered on the PS substrate. Effective working electrode area (Aeff) of the Pt-deposited PS substrate was determined from a redox reaction of Fe(CN)63−/Fe(CN)64− redox couple in which nearly reversible cyclic voltammograms were obtained. The ip versus v1/2 plots showed that Aeff of the PS-based Pt thin-film electrode was 1.62 times larger than that of the PLS-based electrode.Electropolymerization of P3MT on both types of electrodes were carried out by the anodic potential scanning under the given potential range. And then, urease molecules were doped to the P3MT film by the chronoamperometry. Direct electrochemistry of a Urs/P3MT/Pt/Ti/PS electrode in an acetonitrile solution containing 0.1 mol/L NaClO4 was introduced compared to a P3MT/Pt/Ti/PS electrode at scan rates of 10 mV s−1, 50 mV s−1, and 100 mV s−1.Amperometric sensitivity of the Urs/P3MT/Pt/Ti/PS electrode was ca. 1.67 μA mM−1 per projected unit square centimeter, and that of the Urs/P3MT/Pt/Ti/PLS electrode was ca. 1.02 μA mM−1 per projected unit square centimeter in a linear range of 1-100 mM urea concentrations. 1.6 times of sensitivity increase was coincident with the results from cyclic voltammetrc analysis.Surface morphology from scanning electron microscopy (SEM) images of Pt-deposited PS electrodes before and after the coating of Urs-doped P3MT films showed that pore diameter and depth were 2 μm and 10 μm, respectively. Multilayered-film structures composed of metals and organics for both electrodes were also confirmed by auger electron spectroscopy (AES) depth profiles.  相似文献   

11.
In this investigation, attempt has been taken to optimize Pt loading in chemically synthesized carbon-supported Pt catalyst for ethanol electro-oxidation. Surface morphology and structural characteristics showed that the catalyst matrix of 40% Pt/C is formed with homogeneously distributed and reduced particle size compared with the other catalysts. The electrochemical techniques were employed to investigate on the kinetics and mechanism of ethanol electro-oxidation at room temperature. The reaction intermediates formed during the electro-oxidation of ethanol was estimated by ion chromatography and the highest yield of acetate on 40% Pt/C substantiates the catalytic superiority of this electrode over the others. Finally, the catalytic performance of this electrode was compared with an electrodeposited electrode with much higher content of Pt, and it was summarized that the chemical method of deposition is much more effective than electroplating exhibiting high electrocatalytic activity towards ethanol oxidation.  相似文献   

12.
ZnO nanostructures were prepared by thermal oxidation technique for applying as ethanol sensors and dye-sensitized solar cells. To improve sensitivity of the sensor based on ZnO nanostructures, gold doping was performed in ZnO nanostructures. Gold-doped with 0%, 5%, and 10% by weight were investigated. The improvement of sensor sensitivity toward ethanol due to gold doping was observed at entire operating temperature and ethanol concentration. The sensitivity up to 145 was obtained for 10% Au-doped ZnO sensor. This can be explained by an increase of the quantity of oxygen ion due to catalytic effect of gold. Also, it was found that oxygen ion species at the surface of the Au-doped ZnO sensor remained O2− as pure ZnO sensor. For dye-sensitized solar cell application, the dye-sensitized solar cell structure based on ZnO as a photoelectrode was FTO/ZnO/Eosin-Y/electrolyte/Pt counter electrode. ZnO with different morphologies of nanobelt, nano-tetrapod, and powder were investigated. It was found that DSSCs with ZnO powder showed higher photocurrent, photovoltage and overall energy conversion efficiencies than that of ZnO nanobelt and ZnO nano-tetrapod. The best results of DSSCs were the short circuit current (Jsc) of 1.25 mA/cm2, the open circuit voltage (Voc) of 0.45 V, the fill factor (FF) of 0.65 and the overall energy conversion efficiency (η) of 0.68%.  相似文献   

13.
In this study, platinum nanoparticles have been prepared using PtCl4 as a starting material and 1-hexylamine, N-methylhexylamine, N,N-dimethylhexylamine, 1-heptylamine, N-methylheptylamine, and N,N-dimethylheptylamine as surfactants. All these surfactants were used in this synthesis, for the first time, to explore the effect of primary, secondary, and tertiary amine and chain length on the size and catalytic activity toward C1–C3 alcohol electro-oxidation. The electrochemical performance of all catalysts was determined using cyclic voltammetry and chronoamperometry. These techniques indicate that the highest electrocatalytic performance was generally observed when electrochemical surface area (ECSA), percent platinum utility, roughness factor, and the number of CH3 groups attached to the nitrogen atom is higher and the chain length shorter (C6H13). In addition, other important properties such as the crystal structure of platinum, size, and distribution of the platinum nanoparticles on the carbon support, and Pt(0) to Pt(IV) ratio, were determined using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy, and transmission electron microscopy. It was found that increasing ECSA, Pt(0)/Pt(IV) ratio, % Pt utility, and roughness factor improves the C1–C3 alcohol oxidation catalytic performance.  相似文献   

14.
A composite electrode of Pt nanoparticles coupled with tourmaline is prepared on glassy carbon (GC) disk electrode via electrodeposition. The nanocomposite of Pt/tourmaline is characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction, and transmission electron microscopy examinations linked with energy dispersive X-ray analysis. The electrocatalytic performance of the composite electrode (Pt/tourmaline/GC) is investigated in electrocatalysis oxidation of methanol at room temperature by cyclic voltammetry and chronoamperometry. It is indicated that Pt nanoparticles with size of ∼5 nm are uniformly assembled along the tourmaline particles and Pt exists in metallic and oxidated states confirmed by XPS. The results of electro-oxidation of methanol show that Pt/tourmaline catalyst is catalytically more active and stable than platinum-modified GC electrode, and the onset potential of Pt/tourmaline shifts 0.15 V to the negative side, and also the current density is significantly enhanced.  相似文献   

15.
The silver nanoparticles were prepared on the glassy carbon (GC) electrode, modified with p-iso propyl calix[6]arene, by preconcentration of silver ions in open circuit potential and followed by electrochemical reduction of silver ions. The stepwise fabrication process of Ag nanoparticles was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The prepared Ag nanoparticles were deposited with an average size of 70 nm and a homogeneous distribution on the surface of electrode. The observed results indicated that the presence of calixarene layer on the electrode surface can control the particle size and prevent the agglomeratione and electrochemical deposition is a promising technique for preparation of nanoparticles due to its easy-to-use procedure and low cost of implementation. Cyclic voltammetry experiments showed that Ag nanoparticles had a good catalytic ability for the reduction of hydrogen peroxide (H2O2). The effects of p-isopropyl calix[6]arene concentration, applied potential for reduction of Ag+, number of calixarene layers and pH value on the electrocatalytic ability of Ag nanoparticles were investigated. The present modified electrode exhibited a linear range from 5.0 × 10−5 to 6.5 × 10−3 M and a detection limit 2.7 × 10−5 M of H2O2 (S/N = 3) using amperometric method.  相似文献   

16.
Jing Li  Huaqing Xie 《Ionics》2013,19(1):105-112
A sensitive hydroxylamine sensor is developed by electrodeposition of Pt nanoparticles on pre-synthesized polypyrrole nanoparticles modified glassy carbon electrode. The modified electrode presents distinctly electrocatalytic activity toward hydroxylamine oxidation. The kinetic parameters such as the overall numbers of electrons involved in hydroxylamine oxidation, the electron transfer coefficient, standard heterogeneous rate constant, and diffusion coefficient are evaluated. The current response increases linearly with increasing hydroxylamine concentrations and exhibits two wide linear ranges of 5.0?×?10?7–1.1?×?10?3 and 1.1?×?10?3–18.8?×?10?3 M with a detection limit of 0.08 μM (s/n?=?3). The proposed electrode presents excellent operational and storage ability for determining hydroxylamine. Moreover, the sensor shows good sensitivity, selectivity, and reproducibility properties.  相似文献   

17.
《Solid State Ionics》2006,177(26-32):2205-2209
The effect of non-faradaic electrochemical modification of catalytic activity (NEMCA effect) or electrochemical promotion (EP) was investigated in the total oxidation of propane on porous Pt and Rh catalyst-electrode films interfaced to 8 mol% Y2O3-stabilized-ZrO2 (or YSZ), in the temperature range 425–520 °C and for sub-stoichiometric O2 to propane ratios. Application of either positive or negative overpotentials resulted in non-faradaic increase of the catalytic rate, by up to a factor of 4 in the case of Rh and by up to a factor of 1350 in the case of Pt. The rate increase observed in the case of Pt is among the highest ones reported so far in NEMCA studies with oxygen ion conductors as active supports.  相似文献   

18.
Four different Pt/ZrO2/(C/)SiO2 model catalysts were prepared by electron beam evaporation. The morphology of these samples was examined before and after the catalytic reaction by Rutherford back-scattering (RBS), transmission electron microscopy (TEM) and grazing-incidence small-angle scattering (GISAXS). The catalytic behavior of such model catalysts was compared to a conventional Pt/ZrO2 catalyst in the CO oxidation reaction using different oxygen excess (λ = 1 and 2). The so-called material gap was observed: model catalysts were active at higher temperature (620-770 K) and resulted in higher activation energy values (Ea = 77-93 kJ mol−1 at λ = 1 and 129-141 kJ mol−1 at λ = 2) compared to the powdered Pt/ZrO2 catalyst (370-470 K, Ea = 74-76 kJ mol−1). This material gap is discussed in terms of diffusion limitations, reaction mechanism and apparent compensation effect. Diffusion processes seem to limit the reaction on planar samples in the reactor system that was shown to be appropriate for the evaluation of the catalytic activity of powder samples. Kinetic parameters obeyed the so-called apparent compensation effect, which is discussed in detail. Langmuir-Hinshelwood-type of reaction, between COads and Oads, was proposed as the rate-determining step in all cases. Pt particles deposited on planar structures can be used for modeling conventional powdered catalysts, even though some limitations must be taken into account.  相似文献   

19.
A new class of polymer gel electrolyte (PGE) was synthesized using acrylamide as host polymer and LiClO4 as dopant. The polymer gel was subjected to electrochemical AC impedance analysis and thermal analysis. The polymer has conductivity in the order of 10−3 S cm−1 at ambient temperature. Thermogravimetric analysis (TGA) revealed the effect of dopant on host polymer matrix. A supercapacitor was fabricated using acrylamide based polymer gel electrolyte with activated carbon as electrode material and it was subjected to various electrochemical techniques like cyclic voltammetry, electrochemical AC impedance analysis and galvanostatic charge–discharge tests at various current densities. From cyclic voltammetry a specific capacitance of 28 F/g was obtained at a scan rate of 10 mV/s. The capacitor had good self-discharge behavior and good cycle life of more than 10,000 cycles. The coulombic efficiency was more than 95%. These results indicate that this acrylamide-based polymer gel electrolyte doped with LiClO4 is a potential electrolyte for electric double-layer capacitors (EDLCs).  相似文献   

20.
Mahalingam  Savisha  Abdullah  Huda  Shaari  Sahbudin  Muchtar  Andanastuti 《Ionics》2016,22(12):2487-2497

A platinum/reduced graphene oxide (Pt/rGO) nanocomposite acting as a counter electrode (CE) was fabricated using a chemical bath deposition method for In2O3-based dye-sensitized solar cell (DSSC) via sol-gel technique. The report analyzes the morphological and electrochemical impedance spectroscopy of the annealing Pt/rGO films at 350, 400, and 450 °C. Micrograph images obtained from field emission scanning electron microscopy demonstrated the annealed films are highly porous. The energy-dispersive X-ray results show that the carbon atoms were homogeneously distributed on the film annealed at 400 °C. A good photovoltaic performance was exhibited with high photocurrent density of 8.1 mA cm−2 and power conversion efficiency (η) of 1.68 % at the Pt/rGO CE annealed at 400 °C. The employed electrochemical impedance spectroscopy analysis quantifies that the Pt/rGO films annealed at 400 °C provide more efficient charge transfer with the lowest effective recombination rate and high electron life time, hence improving the performance of Pt/rGO CE.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号