首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
赵小松  吕建钦 《中国物理 C》2009,33(Z2):125-127
Both the PIC (Particle-In-Cell) model and the Lie algebraic method can be used to simulate the transport of intense continuous beams. The PIC model is to calculate the space charge field, which is blended into the external field, and then simulate the trajectories of particles in the total field; the Lie algebraic method is to simulate the intense continuous beam transport with transport matrixes. Two simulation codes based on the two methods are developed respectively, and the simulated results of transport in a set of electrostatic lenses are compared. It is found that the results from the two codes are in agreement with each other, and both approaches have their own merits.  相似文献   

2.
A collisional-radiative model is developed for population calculations of plasmas in non-local thermodynamic equilibrium. The rate equations in detailed configuration accounting are solved to obtain ion populations. The configuration averaged rate coefficients are used in the rate equations. The cross sections are calculated based on the first perturbation theory. Wavefunctions required in cross section calculations are obtained by the Hartree-Fock-Slater self-consistent-field model. This kinetic model is applied to low- and medium-Z as well as high-Zplasmas. The results are compared with those of other theoretical models and experiments. The comparisons show that the present results of the mean charge statetheoretical ones, while for high-Z elements, the presentthe experimental ones.for low- and medium-Z elements agree well with other theoretical ones, while for high-Z elements, the present mean ionization stages are about two stages lower than the experimental ones.  相似文献   

3.
Gas flow characteristics in straight silicon microchannels   总被引:3,自引:0,他引:3       下载免费PDF全文
Experiments have been conducted to investigate nitrogen gas flow characteristics through four trapezoidal silicon microchannels with different hydraulic diameters.The volume flow rate and pressure ratio are measured in the experiments.It is found that the friction coefficient is no longer a constant,which is different from the conventional theory.The characteristics are first explained by the theoretical analysis.A simplified rectangular model(rectangular straight channel model)is then proposed.The experimental results are compared with the theoretical predictions based on the simplified rectangular model and the two-dimensional flow between the parallel-plate model which was usually used.The difference between the experimental data and the theoretical predictions is found in the high-pressure ratio cases.The influence of the gas compressibility effect based on the Boltzmann gas kinetic analysis method is studied to interpret the discrepancy.We discuss two important factors affecting the affecting the application extent of different prediction models.  相似文献   

4.
连增菊 《中国物理 B》2010,19(5):583-591
The electrostatic interaction of a charged spherical particle in the vicinity of an orifice plane has been investigated in this paper.The particle can creep along the axis of the orifice and is immersed in a bulk electrolyte.By solving the Poisson-Boltzmann problem,we have obtained the effective electrostatic interaction for several values of reduced orifice radius h,including the cases of h > 1,h = 1 and h < 1.Two kinds of boundary conditions of the orifice plane are considered.One is the constant potential model corresponding to a conducting plane,the other is the constant charge model.In the constant potential model,there is an electrostatic attraction between the particle and the orifice plane when they get close to each other,while there is a pure electrostatic repulsion in the constant charge model.The interactions in both boundary models are sensitive to the parameters of the reduced orifice radius,the reduced particle-orifice distance,surface charge densities of the particle and orifice plane,and the reduced Debye screen constant corresponding to the salt-ion concentration and ion valence.  相似文献   

5.
The second Born approximation (SBA) theory is applied to the study of electron-atom scattering in the presence of a CO2 laser field.The absolute differential crass sections of e-Ar scattering are calculated with multiphoton exchange in two special scattering geometries G1 (for small-angle scattering) and G2. For geometry G1, compared with the results of two different model potentials for electron elastic scattering by atoms, it is found that electronatom polarization potential plays an important role in laser-assisted electron-atom scattering. Some calculational results in geometries G2 are given. Our results are found to be better than other theoretical results as compared with the experimental data in geometries G1 and G2.  相似文献   

6.
The charge conductance and the shot noise in an Aharonov--Bohm interferometer with double quantum dots embedded and coupled to each other by a capacity are studied in the framework of the equation of motion of Green’s function. From the impurity Anderson model Hamiltonian, the equations of motion of nonequilibrium Green functions are derived and solved including the effects of two body correlations under Lacroix’s approximation. Our results show that the conductance, the shot noise, and the Fano factor (the ratio of the shot noise to the Poisson noise) as functions of the magnetic flux oscillate with the period of h/e, and their oscillation behaviour is similar to the results of the experiment replacing the capacitive coupling by tunnelling between the two dots. The experiment is suggested to test the results.  相似文献   

7.
A double helix model of charge transport in DNA molecule is given and the transmission spectra off our DNA sequences are obtained. The calculated results show that the transmission characteristics of DNA are not only related to the longitudinal transport but also to the transverse transport of molecule. The periodic sequence with the same composition has stronger conduction ability. With the increasing of bases composition, the conductive ability reduces, but the weight of θ direction rises in charge transfer.  相似文献   

8.
Surface potential is an important parameter related to the physical and chemical properties of charged particles. A simple analytical model for the estimation of surface potential is established based on the Poisson–Boltzmann theory with the consideration of the dielectric decrement in mixed electrolyte. The analytical relationships between surface potential and charge density are derived in different mixed electrolytes with monovalent and bivalent ions. The dielectric decrease on the charged surface strongly affects the surface potential at a high charge density with different ion strengths and concentration ratios of counter-ions. The surface potential based on the Gouy–Chapman model is underestimated because of the dielectric decrement on the surface. The diffuse layer can be regarded as a continuous uniform medium only when the surface charge density is lower than 0.3 C·m~(-2). However, the surface charge densities of many materials in practical applications are higher than 0.3 C·m~(-2). The new model for the estimation of surface potential can return to the results obtained based on the Gouy–Chapman model at a low charge density. Therefore, it is implied that the established model that considers the dielectric decrement is valid and widely applicable.  相似文献   

9.
The magnetism and conductance of two-dimensional Heisenberg spin lattices are investigated by using Monte Carlo simulations to qualitatively understand a fascinating magnetoresistance effect observed in magnetic materials and their artificial multilayers.Various magnetic profiles,including a pure ferromagnetic,a pure antiferromagnetic,two phase competitive cases,and an artificial sandwich junction,are simulated,and their conductances are calculated based on an extended resistor–network model.Magnetoresistance is observed in some lattices,which is prominent when the system is near phase boundaries.Compared with real manganites,the absence of colossal magnetoresistance in our simulation implies the essential role of charge ordered phase which is not included in our pure spin model.However,our model provides an intuitive understanding of the spin-dependent conductance in large scale.  相似文献   

10.
We analyze in detail the numerical results of superheavy nuclei in deformed relativistic mean-field model and deformed Skyrme-Hartree-Fock model. The common points and differences of both models are systematically compared and discussed. Their consequences on the stability of superheavy nuclei are explored and explained. The theoretical results are compared with new data of superheavy nuclei from GSI and from Dubna and reasonable agreement is reached. Nuclear shell effect in superheavy region is analyzed and discussed. The spherical shell effect disappears in some cases due to the appearance of deformation or superdeformation in the ground states of nuclei, where valence nucleons occupy significantly the intruder levels of nuclei. It is shown for the first time that the significant occupation of valence nucleons on the intruder states plays an important role for the ground state properties of superheavy nuclei. Nuclei are stable in the deformed or superdeformed configurations. We further point out that one cannot obtain the octupole deformation of even-even nuclei in the present relativistic mean-field model with the σ, ω and ρ mesons because there is no parity violating interaction and the conservation of parity of even-even nuclei is a basic assumption of the present relativistic mean-field model.  相似文献   

11.
The dynamics of a system for different types of polarons, i.e., in polythymine nucleotides (large-radius polaron), in polyadenine fragments (small-radius polaron), and in polyguanine DNA (intermediate case) at different thermostat temperatures are calculated using the semi-classical Holstein model. The temperature dependences of the thermodynamic equilibrium values of the total energy, the energy of an excess charge, and the electronic heat capacity have been obtained. For all polaron types, the peak of the electronic heat capacity dependence on temperature separates two modes (polaron and delocalized state). The electronic part of the energy is estimated in the high-temperature limit. In all cases, the electron heat capacity at high temperatures decreases in inverse proportion to the square of the temperature.  相似文献   

12.
13.
A method based on a selfconsistent solution of a quantum-mechanical system with temperature fluctuations described by Langevin equations is developed to calculate the charge carrier mobility in DNA. To model the charge transfer in DNA, a combined Holstein – SSH Hamiltonian is considered. As an example the hole mobility is calculated at room temperature for synthetic poly (G)/poly (C) duplex with regard to main structural fluctuations.  相似文献   

14.
The high temperature drift mobility (μd) of charge carriers in nonstoichiometric cerium dioxide (CeO2?x) has been calculated by combining the electrical conductivity and nonstoichiometry data on the basis of the oxygen vacancy model with correct ionization state. The electrical conductivity was measured by a four-probe d.c. technique and the nonstoichiometry by thermogravimetric analysis. The dilute solution model of the point defects is valid up to x = 0.03. From the magnitude of μd and its temperature dependence, the charge carriers in CeO2?x, are proposed to be small-polarons formed by localization of electrons at cerium sites and the charge transport process is proposed to occur by a hopping mechanism. The observed temperature dependence of μd is in accord with that derived by Holstein and Friedman for small-polaron transport by the hopping mechanism. The activation energy of mobility is found to increase with increasing x as expected for the hopping model.  相似文献   

15.
Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10?4 to 1.0 M, and in a few cases up to I = 2 M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w 0 and w 1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KC1 and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KC1-KF mixture.  相似文献   

16.
The results from a theoretical study of the electron structure of an impurity rare-earth Sm2+ defect in a LaF3 crystal are presented. The electron energy levels of the rare-earth impurity defect and the transitions between them are studied using the multiconfigurational CASSCF/CASPT2 method. The absorption spectrum obtained during the calculations is consistent with the experimental data. Based on our model, we can state definitively that a vacancy on an anion sublattice serves as a charge compensator for a divalent ion.  相似文献   

17.
The gap and the density of states of high-Tc superconductors have been a subject of paramount interest. In order to explain the observed experimental behavior several pairing mechanisms in high-temperature superconductivity have been considered, by theoretical calculations. In this work, within the BCS scheme, a two-band model with energy band overlapping is introduced. The gap parameter and the density of states in a two-dimensional superconducting system are studied as functions of the charge concentration. This model is applied to Bi2212 in order to obtain numerical results.  相似文献   

18.
In this work we investigate electron–impurity binding energy in GaN/HfO2 quantum wells. The calculation considers simultaneously all energy contributions caused by the dielectric mismatch: (i) image self-energy (i.e., interaction between electron and its image charge), (ii) the direct Coulomb interaction between the electron–impurity and (iii) the interactions among electron and impurity image charges. The theoretical model account for the solution of the time-dependent Schrödinger equation and the results shows how the magnitude of the electron–impurity binding energy depends on the position of impurity in the well-barrier system. The role of the large dielectric constant in the barrier region is exposed with the comparison of the results for GaN/HfO2 with those of a more typical GaN/AlN system, for two different confinement regimes: narrow and wide quantum wells.  相似文献   

19.
We study the thermopower and thermal conductivity of a gate-defined quantum dot, with a very strong Coulomb repulsion inside the dot, employing the X-boson approach for the impurity Anderson model. Our results show a change in the sign of the thermopower as function of the energy level of the quantum dot (gate voltage), which is associated with an oscillatory behavior and a suppression of the thermopower magnitude at low temperatures. We identify two relevant energy scales: a low temperature scale dominated by the Kondo effect and a T∼ΔTΔ temperature scale characterized by charge fluctuations. We also discuss the Wiedemann–Franz relation and the thermoelectric figure of merit. Our results are in qualitative agreement with recent experimental reports and other theoretical treatments.  相似文献   

20.
A two-site single polaron Holstein model is studied in presence of a difference in bare site energies (epsilond=epsilon2-epsilon1) using the perturbation theory with the variational modified Lang-Firsov (MLF) phonon basis. The polaronic ground-state wave function is calculated up to the fifth order of perturbation. The effect of epsilond (acts as a strength of diagonal disorder) on the polaron crossover, polaronic kinetic energy, oscillator wavefuncion and polaron localization are studied. Considering a double-exchange Holstein model with finite epsilond, role of disorder on the properties of the double-exchange system is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号