首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
Both high and low frequency relaxation oscillations have been observed in an argon capacitive discharge connected to a peripheral grounded chamber through a slot with dielectric spacers. The oscillations, observed from time-varying optical emission of the main discharge chamber, show, for example, a high frequency (46 kHz) relaxation oscillation at 100 mTorr, with an absorbed power near the peripheral breakdown, and a low frequency (2.7-3.7 Hz) oscillation, at a higher absorbed power. The high frequency oscillation is found to ignite a plasma in the slot, but usually not in the periphery. The high frequency oscillation is interpreted by using an electromagnetic model of the slot impedance, combined with the circuit analysis of the system including a matching network. The model is further developed by using a parallel connection of variable peripheral capacitance to analyse the low frequency oscillation. The results obtained from the model are in agreement with the experimental observations and indicate that a variety of behaviours are dependent on the matching conditions.  相似文献   

2.
周筑文  M.  A.  LIEBERMAN  Sungjin  KIM 《中国物理快报》2006,23(8):2251-2254
We have observed relaxation oscillations in a capacitive discharge in Ar gas, connected to a peripheral ground chamber. The plasma oscillations observed from time-varying optical emission from the main discharge chamber show, for example, a high frequency (75.37kHz) relaxation oscillation, at lOOmTorr and 8 W absorbed power, and a low frequency (2.72Hz) relaxation oscillation, lOO mTorr and 325 W absorbed power. Time-varying optical emission intensity and plasma density are also detected with a Langmuir probe. The theoretical result agrees well with experiments.  相似文献   

3.
Low-frequency (2.72-3.70 Hz) relaxation oscillations at 100 mTorr at higher absorbed power were observed from time-varying optical emission of the main discharge chamber and the periphery. We interpret the low frequency oscillations using an electromagnetic model of the slot impedance with parallel connection variational peripheral capacitance, coupled to a circuit analysis of the system including the matching network. The model results are in general agreement with the experimental observations, and indicate a variety of behaviours dependent on the matching conditions.  相似文献   

4.
《中国物理 B》2021,30(9):95205-095205
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber, for neutral beam injection system in CFETR. In this model, the electron effective collision frequency and the ion mobility at high E-fields are employed, for accurate simulation of discharges at low pressures(0.3 Pa–2 Pa) and high powers(40 k W–100 k W). The results indicate that when the high E-field ion mobility is taken into account, the electron density is about four times higher than the value in the low E-field case. In addition, the influences of the magnetic field, pressure and power on the electron density and electron temperature are demonstrated. It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances. However, the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not. Besides, the maximum of the electron density first increases and then decreases with magnetic field, while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant. As the pressure increases from 0.3 Pa to 2 Pa, the electron density becomes higher, with the maximum moving upwards to the driver region, and the symmetry of the electron temperature in the xz-plane becomes much better. As power increases, the electron density rises, whereas the spatial distribution is similar. It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters, while the power only has little effect.  相似文献   

5.
A self-consistent and three-dimensional (3D) model of argon discharge in a large-scale rectangular surface-wave plasma (SWP) source is presented in this paper, which is based on the finite-difference time-domain (FDTD) approximation to Maxwell's equations self-consistently coupled with a fluid model for plasma evolution. The discharge characteristics at an input microwave power of 1200~W and a filling gas pressure of 50~Pa in the SWP source are analyzed. The simulation shows the time evolution of deposited power density at different stages, and the 3D distributions of electron density and temperature in the chamber at steady state. In addition, the results show that there is a peak of plasma density approximately at a vertical distance of 3~cm from the quartz window.  相似文献   

6.
A survey on the mechanisms of powerful terahertz (THz) radiation from laser plasmas is presented.Firstly,an analytical model is described,showing that a transverse net current formed in a plasma can be converted into THz radiations at the plasma oscillation frequency.This theory is applied to explain THz generation in a gas driven by two-color laser pulses.It is also applied to THz generation in a tenuous plasma driven by a chirped laser pulse,a few-cycle laser pulse,a DC/AC bias electric field.These are well verified by particle-in-cell simulations,demonstrating that THz radiations produced in these approaches are nearly single-cycles and linear polarized.In the chirped laser scheme and the few-cycle laser scheme,THz radiations with the peak field strength of tens of MV/cm and the peak power of gigawatt can be achieved with the incident laser intensity less than 10 17 W/cm 2.  相似文献   

7.
A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target, and the impulses delivering from the plasma to the target are measured at different laser power densities. Analysing the formation process of laser plasma and the laser supported detonation wave (LSDW) and using fluid mechanics theory and Pirri's methods, an approximately theoretical solution of the impulse delivering from the plasma to the target under our experimental condition is found. Furthermore, according to the formation time of plasma and the variation of pressure in plasma in a non-equilibrium state, a physical model of the interaction between the pulse laser and the solid target is developed. The plasma evolutions with time during and after the laser pulse irradiating the target are simulated numerically by using a three-dimensional difference scheme. And the numerical solutions of the impulse delivering from the plasma to the target are obtained. A comparison among the theoretical, numerical and experimental results and their analyses are performed. The experimental results are explained reasonably. The consistency between numerical results and experimental results implies that the numerical calculation model used in this paper can well describe the mechanical action of the laser on the target.  相似文献   

8.
Multi-channel soft x-ray (SX) detectors are applied to generate images of magnetohydrodynamic (MHD) oscillation on the HT-7 tokamak, and the data from SX cameras are analysed by using the Fourier--Bessel harmonic reconstruction method and the singular value decomposition. The image reconstruction of SX emissivity is obtained on the assumption of plasma rigid rotation. One of the important phenomena in the HT-7 discharge is the transition from the sawtooth oscillations to the MHD oscillations when the plasma density grows higher. The MHD structure observed in the SX tomography is featured as follows: the magnetic surface of MHD structure is made up of the crescent-shaped ``hot core' and the circular ``cold bubble'. The structure of the magnetic surface is relatively stable. It rotates in the direction of the electron diamagnetic drift at a frequency being the oscillation frequency of the MHD oscillations.  相似文献   

9.
The dynamics of granular material discharging from a cuboid but thin hopper,including the hopper flow and granular jet,are investigated via discrete element method(DEM)simulations.The slot width is varied to study its influence on the flow.It is found the flow in the cuboid hopper has similarity with the flow in two-dimensional(2D)hopper.When the slot width is large,the flowrate is higher than the predicted value from Beverloo’s law and the velocity distribution is not Gaussian-like.For granular jet,there is a transition with varying slot width.For large slot width,there is a dense core in the jet and the variations of velocities and density are relatively small.Finally,the availability of continuum model is assessed and the results show that the performance with large slot width is better than that with small slot width.  相似文献   

10.
To study the impact of plasma generated by microwave breakdown on the propagation properties of microwave in high power microwave(HPM) devices, a three-dimensional(3-D) fluid model of argon plasma slab in rectangular waveguide is established and calculated by the finite-difference-time-domain(FDTD) method. A rectangular waveguide with a breakdown chamber filled with argon is set as the physics model, and HPM with frequency of 3–50 GHz propagates through this physics model. The time evolutions of the breakdown process are investigated, the reflection, transmission, and absorption coefficients of HPM are calculated, and the influences of some important parameters, including the thickness of the plasma slab and the microwave frequency on the propagation properties of the microwave are shown. Results of this work can offer theoretical instructions for suppressing the influence of breakdown to the performance of HPM devices, and for the use of microwave breakdown, such as the design of plasma limiter or absorber in HPM devices.  相似文献   

11.
Taking into account the multistep ionization a simple hydrodynamical model for the low-frequency longitudinal waves in low-current argon discharges with a thermionic cathode at the pressure from 10 Pa to 100 Pa is presented. A conclusion is drawn that the most important instability factor in such discharges is the interaction between the low-energy electron beam (U b12 eV) and the plasma. The calculated dipersion characteristics show good agreement with the experimental results.  相似文献   

12.
吴衍青  肖体乔 《物理学报》2006,55(7):3443-3450
为了研究该离子振荡及其对低气压负电性放电自持条件的影响,建立了一个整体模型描述低气压正负离子等离子体中离子振荡与少量电子的相互作用. 在模型中引入参数r描述电子流体与电极碰撞后的动量保存(或损失)的程度. 发现体系存在一个临界值r=rc,它导致了两种不同性质的电子损失机理. 另一临界值r=4rc决定了两种不同的电子密度随时间增长的阈值. 这使得该阈值随r非单调变化, 进而导致RF负电性脉冲放电主动放电阶段初期的自持放电条件参数空间中可以存在间隙. PIC-MCC 关键词: 负电性放电 脉冲放电 离子振荡  相似文献   

13.
This paper proposes an innovative vibration testing method based on impulse response excited by laser ablation. In conventional vibration testing using an impulse hammer, high-frequency elements of over tens of kilohertz are barely present in the excitation force. A pulsed high-power YAG laser is used in this study for producing an ideal impulse force on a structural surface. Illuminating a point on a metal with the well-focused YAG laser, laser ablation is caused by generation of plasma on the metal. As a result, an ideal impulse excitation force generated by laser ablation is applied to the point on the structure. Therefore, it is possible to measure high-frequency FRFs due to the laser excitation. A water droplet overlay on the metal is used to adjust the force magnitude of laser excitation. An aluminum block that has nine natural frequencies below 40 kHz is employed as a test piece. The validity of the proposed method is verified by comparing the FRFs of the block obtained by the laser excitation, impulse hammer, and finite element analysis. Furthermore, the relationship between accuracy of FRF measurements and sensitivity of sensors is investigated.  相似文献   

14.
The possibility of using a single-channel spectral computer complex for studying, by an actinometry method, the laws governing a change in the concentration of atomic fluorine in the nonstationary period of a high-frequency discharge in SF6 and CF4 gases is shown. It has been established that the dependence of the atomic fluorine concentration on the time of discharge running is influenced by the state of the discharge chamber surface and, first of all, the degree of its hydration. In particular, this dependence can be monotonic or have a maximum that owes its origin to the sedimentation of the products of the dissociation of molecules on the surfaces of the discharge chamber walls contacting a plasma.  相似文献   

15.
A new magnetic discharge stabilization technique for coaxial laser systems is described. The approach utilizes crosses electric and magnetic fields to create and maintain a large and rapidly rotating plasma volume which does not experience glow-to-arc transitions. Very high cw specific discharge power loadings have been achieved even without the benefit of external gas cooling or circulation.Performance is insensitive to gas composition and pressure such that high power coaxial discharges have been run in CO2 laser gas mixtures up to several hundred torr. Stable cw discharges have also been obtained in mixtures containing several torr of SF6.The technique appears to be readily scalable to give very large excited volumes in systems with comparatively small overall physical dimensions.  相似文献   

16.
In this work, a complex investigation of the film surface composition and nanoscale mechanical properties, i.e. hardness and elastic modulus, of plasma-modified and silica-coated hydrogel thin films was carried out. Plasma treatment was performed in a reactive ion etching chamber (SF6, CHF3) at radio frequency (rf, 13.56 MHz) and in a plasma-enhanced chemical vapor deposition chamber (SiH4/N2, NH3, N2O) at radio frequency and dual frequency (13.56 MHz/100 kHz), respectively. The use of the dual-frequency configuration comprising two power supplies and operated in a switched mode enabled the investigation of the ion-bombardment influence on the polymer properties. For the application in silicon micromachined sensors best results were obtained by using a NH3 or SiH4/N2 low-pressure plasma modification and a silica coating of the sensitive hydrogel film. PACS 81.05.Lg; 81.15.Gh; 81.65.Cf; 81.70.Bt  相似文献   

17.
杨靖  李景镇  孙秀泉  龚向东 《物理学报》2005,54(7):3251-3256
了解含有负离子的低温等离子体的过渡特性,在等离子体控制过程中,尤其在选择性等离子 体腐蚀工艺和改善电荷堆积等现象中是十分重要的课题.对电源驱动频率为1356MHz,压力 为05Torr(05×10333Pa)状态下的硅烷(SiH4)低温等离子体的阶跃响应 进行仿真. 当电源电压振幅从550V阶跃减小到350V时,硅烷低温等离子体表现出以数千RF周期为周期的振荡现象,等离子体中的带电粒子的运动变化决定了振荡现象的产生和振荡周期等特性. 关键词: 迁移率 扩散系数 阶跃响应 等离子体振荡  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号