首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
For fundamental studies of the atmospheric corrosion of steel, it is useful to identify the iron oxide phases present in rust layers. The nine iron oxide phases, iron hydroxide (Fe(OH)2), iron trihydroxide (Fe(OH)3), goethite (α-FeOOH), akaganeite (β-FeOOH), lepidocrocite (γ-FeOOH), feroxyhite (δ-FeOOH), hematite (α-Fe2O3), maghemite (γ-Fe2O3) and magnetite (Fe3O4) are among those which have been reported to be present in the corrosion coatings on steel. Each iron oxide phase is uniquely characterized by different hyperfine parameters from M?ssbauer analysis, at temperatures of 300K, 77K and 4K. Many of these oxide phases can also be identified by use of Raman spectroscopy. The relative fraction of each iron oxide can be accurately determined from the M?ssbauer subspectral area and recoil-free fraction of each phase. The different M?ssbauer geometries also provide some depth dependent phase identification for corrosion layers present on the steel substrate. Micro-Raman spectroscopy can be used to uniquely identify each iron oxide phase to a high spatial resolution of about 1 μm. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The corrosion products on steels exposed at two sites in Campeche, México and one site at Kure Beach, USA, have been investigated to determine the extent to which different marine conditions and exposure times control the oxide formation. The corroded coupons were analyzed by Mössbauer, Raman and infrared spectroscopy as well as X‐ray diffraction, in order to completely identify the oxides and map their location in the corrosion coating. The coating compositions were determined by Mössbauer spectroscopy using a new parameter, the relative recoilless fraction (F-value) which gives the atomic fraction of iron in each oxide phase from the Mössbauer sub‐spectral areas. For short exposure times, less than three months, an amorphous oxyhydroxide was detected after which a predominance of lepidocrocite (γ-FeOOH), and akaganeite (β-FeOOH) were observed in the corrosion coatings with the fraction of the later phase increasing at sites with higher atmospheric chloride concentrations. The analysis also showed that small clusters of magnetite (Fe3O4), and maghemite (γ(Fe2O3), were seen in the micro-Raman spectra but were not always identified by Mössbauer spectroscopy. For longer exposure times, goethite (α-FeOOH), was also identified but little or no β-FeOOH was observed. It was determined by the Raman analysis that the corrosion products generally consisted of inner and outer layers. The protective layer, which acted as a barrier to slow further corrosion, consisted of the α-FeOOH and nano-sized γ-Fe2O3 phases and corresponded to the inner layer close to the steel substrate. The outer layer was formed from high γ-FeOOH and low α-FeOOH concentrations.  相似文献   

3.
The corrosion products formed on carbon and weathering steels exposed in marine, industrial and rural environments in the United States for 16 years have been investigated using M?ssbauer spectroscopy, Raman spectrometry and chemical analysis. M?ssbauer spectroscopy was used to measure the fraction of each oxide in the corrosion coatings and micro-Raman spectrometry was used to locate and map the oxides to 2 μm spatial resolution. M?ssbauer spectroscopy identified the corrosion products in the weathering steels as 75% goethite, 20% lepidocrocite and 5% maghemite. Raman analysis showed that the corrosion products generally formed as alternating layers containing different oxides. For the weathering steels the protective inner-layer closest to the steel substrate consisted of nano-sized goethite ranging in size from 5–30 nm and having a mean particle size of about 12 nm. The outer-layer close to the coating surface, consisted of lepidocrocite and goethite with the former oxide being most abundant. Electron probe micro-analysis measured significant chromium in the goethite close to the steel substrate. Comparison of the goethite in the corrosion products was made with synthetic chromium substituted goethite with nearly identical microstructural characteristics being recorded. It is concluded that chromium inclusions in the goethite are important for formation of a nano-phase oxide layer which may help protect the weathering steel from further corrosion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The corrosion of a carbon steel was studied in different atmospheres at sites in the Republic of Panama. The weight loss (corrosion penetration) suffered by the carbon steel is related to time by a bilogarithmic law. Mössbauer spectroscopy indicated the rust was composed of non-stoichiometric magnetite (Fe3-xO4), maghemite (γ-Fe2O3), goethite (α-FeOOH) of intermediate particle size, lepidocrocite (γ-FeOOH) and superparamagnetic particles. Magnetite formation is related to the alternating dry--wet cycles. Goethite is related to corrosion penetration by a saturation type of behavior, following a Langmuir type of relationship. Goethite in rust protects steel against further atmospheric corrosion.  相似文献   

5.
Wearthering steels treated with and without zinc phosphate solution were exposed to atmosphere for 15 years and rust layers produced on the steels were analysed by scattering Mössbauer spectrometry (CEMS and XMS). γ-FeOOH, fine α-FeOOH, 5Fe2O3·9H2O, γ-Fe2O3 and Fe3O4 were identified to be present in the rust formed on the steel without phosphate coating. Large particles of γ-Fe2O3 and Fe3O4 formed on the uncoated steel exposed to atmosphere in a position facing north on vertical plane. The layer structure of rust was affected by the position. The thin rust layer formed on the phosphate + carylite resin coated steel was considered to consist of γ-FeOOH, fine α-FeOOH, and fine γ-Fe2O3.  相似文献   

6.
The phases and compositions of the corrosion products of a mild steel (A-36) and two weathering steels (A-588 and COR 420) formed after 3 months exposure to the tropical marine atmosphere of Panama were examined using FTIR and Mössbauer spectroscopy. The results show that amorphous or crystallized iron oxyhydroxides goethite α-FeOOH and lepidocrocite γ-FeOOH are early corrosion products. Maghemite γ-Fe2O3 and magnetite Fe3O4 have also been identified and found to be prominent components for steels exposed to the most aggressive conditions. The formation of akaganeite β-FeOOH was observed when chlorides were occluded within the rust. FTIR showed the presence of hematite α-Fe2O3 in one sample.  相似文献   

7.
Mössbauer spectroscopy and X-ray diffraction were used to establish the composition of the rust formed on pure iron and weathering steel after exposure to several wet-dry cycles in an SO2-polluted atmosphere. α-FeOOH poorly crystallized andquasi amorphous ferrihydrite are identified as the main corrosion products. The rust has different particle size for iron and weathering steel samples.  相似文献   

8.
Corrosion research, and the need to fully understand the effects that environmental conditions have on the performance of structural steels, is one area in which Mössbauer spectroscopy has become a required analytical technique. This is in part due to the need to identify and quantify the nanophase iron oxides that form on and protect certain structural steels, and that are nearly transparent to most other spectroscopic techniques. A review is given of the most recent Mössbauer characterization of rusts that have formed on structural steels exposed to different environments. Mössbauer spectroscopy is playing an important role in a new corrosion program in the United States in which steel bridges, old and new, are being evaluated for corrosion problems that may reduce their serviceable lifetimes. Mössbauer spectroscopy has been used to characterize the corrosion products that form the protective patina on weathering steel, as well those that form in adverse environments in which the oxide coating is not adherent or protective to the steel. Mössbauer spectroscopy has also become an important analytical technique for investigating the corrosion products that have formed on archeological artifacts, and it is providing guidance to aid in the removal of the oxides necessary for their preservation.  相似文献   

9.
In the present work, the phases of corrosion products of underground steel tube and its changes with degree of depth of rust layer were analysed using Mössbauer effect, X-ray diffraction analysis and proton X-ray fluorescence analysis. The procedure of rust formation was discussed.  相似文献   

10.
Mössbauer spectroscopy and X-ray diffraction analysis allow to detect the presence of green rust 2, the ferrous-ferric sulfated compound of composition, 4Fe(OH)2,2FeOOH,FeSO4,nH2O, mixed with magnetite at the surface of steel sheets corroded in a harbour area where the presence of sulfate reducing bacteria are also detected.  相似文献   

11.
Polycrystalline Fe2BO4 was prepared by solid state reactions and its electronic and magnetic properties were investigated by Mössbauer spectroscopy and magnetization measurements. The Mössbauer spectra of Fe2BO4 below 270 K indicate the presence of Fe2+ and Fe3+ sites in the structure, in a ratio 1 : 1. Above this temperature electron delocalization sets in between the divalent and trivalent iron ions and Fe2.5+ states are observed. The temperature dependence of the Mössbauer spectra and magnetization measurements clearly show the onset of magnetic order below 155 K.  相似文献   

12.
Laser alloying of surfaces has attracted a great deal of attention for technical applications. By laser alloying of materials it is possible to improve hardness as well as wear and corrosion resistance of the surface without affecting the bulk material. The surface of a mild steel (C45) substrate was laser-alloyed with chromium-boride CrB2. The chromium-boride was added to the substrate surface by powder injection during laser surface melting with a high power continuous-wave CO2-laser. The resulting surface layers were studied by surface Mössbauer measurements. The backscattering geometry of Conversion X-ray Mössbauer Spectroscopy (CXMS) was used to study the phase formation in the laser alloyed surface. The results for the treated surfaces are discussed for different samples.  相似文献   

13.
Nanocrystalline Ni0.35Zn0.65Fe2O4 synthesized by mechanical alloying method and subsequent annealing at 300°C has been characterized by XRD, TEM and Mössbauer spectroscopic techniques. Mössbauer spectroscopic study divulges the enhancement of magnetic order, ordering temperature and magnetization in nano-crystalline sample compared to its bulk counterpart. This magnetic enhancement has mostly been prompted by cation redistribution in the nanosized sample. Zinc having strong A site affinity determines the nature and intensity of site exchange of cations, which has a strong influence in the genesis of enhancement/reduction in magnetic property of nano-crystalline Ni–Zn ferrite samples.  相似文献   

14.
Double iron and aluminum carbides were prepared by mechanical alloying from elemental powders, with a ball-to-powder weight ratio 20:1. The samples were milled for 1, 3, 5, 10, 15, 20 and 25 h. The alloy progress for each milling time was evaluated by X-ray diffraction (XRD) and 57Fe Mössbauer spectroscopy. Once the alloy was consolidated two sorts of paramagnetic sites and a magnetic distribution were detected according to the Mössbauer fit. The majority doublet could correspond to Fe3AlC0.5 carbide as X-ray diffraction suggest, and the other could be Fe3AlC0.69; the magnetic distribution corresponding to Fe3Al phase, Fe7C3 and Fe5C2 single carbides. The hyperfine parameters are reported.  相似文献   

15.
The magnetic and magnetotransport properties of nanocrystalline Ag0.85Fe0.15 and Ag0.70Fe0.30 alloys have been studied by Mössbauer spectroscopy, magnetization and resistivity measurements. The samples were prepared by mechanical alloying of Fe and Ag powders in a high-energy ball mill. Mössbauer spectroscopy and magnetic measurements of the final milled samples indicate the presence of single-domain ‘Fe’ particles. The magnetoresistance values, at 4.2 K and for a magnetic field of 8 T, are 2.5% and 5.7% for samples Ag0.85Fe0.15 and Ag0.70Fe0.30, respectively. The magnetoresistance behavior indicates the cluster-glass-like features in both the final milled samples.  相似文献   

16.
The magnetic behavior of the pseudo-binary system Fe2(Nb1-xMnx) is investigated by means of the experimental techniques of X-ray diffraction (XRD), Mössbauer Spectroscopy (MS) and magnetization studies. The XRD results indicate that, up to x=0.3, all samples are single phase with hcp structure. This corresponds to the solubility limit of manganese in this phase. Above x=0.3, all prepared samples present the coexistence of three phases, two with hcp structure and one fcc. The magnetization measurements at low temperatures indicate that the transition temperature increases with the addition of Mn atoms in the Fe2Nb host (TN=10 K) up to 58 K for x=0.1. The Mössbauer spectra were fitted with a quadrupole splitting distribution, which indicates that the average quadrupolar splitting increases slightly with the increase of the manganese concentration.  相似文献   

17.
In this research, three Bulgarian steels were employed, one carbon (08KP) and other two low alloyed (KBC) and (KORAT). These three steels were exposed on a test site affected with industrial pollution in the Cuban climate, for a period of one, two and three years. The phase composition obtained by means of XRD and Mössbauer spectroscopy is mainly a mixture of Goethite (α-FeOOH) and Lepidocrocite (γ-FEOOH) in the three steels. The mean width of the Goethite reflexions, as determined in the diffractograms, is increased in the case of the low alloyed steels, while in Mössbauer spectra two types of magnetic arrangement for Goethite appear, one antiferromagnetic (sextet) and the other superparamagnetic (doublet). This behaviour is due to the effect of the small particle size and the presence of alloying elements in the structure. In this paper, the values of the areas of both effects are discussed from the greater formation of superparamagnetic Goethite in the KORAT steel which exibits the lowest corrosion rate.  相似文献   

18.
100 MeV Si+7 irradiation induced modifications in the structural and magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles have been studied by using X-ray diffraction, Mössbauer spectroscopy and a SQUID magnetometer. The X-ray diffraction patterns indicate the presence of single-phase cubic spinel structure of the samples. The particle size was estimated from the broadened (311) X-ray diffraction peak using the well-known Scherrer equation. The milling process reduced the average particle size to the nanometer range. After irradiation a slight increase in the particle size was observed. With the room temperature Mössbauer spectroscopy, superparamagnetic relaxation effects were observed in the pristine as well as in the irradiated samples. No appreciable changes were observed in the room temperature Mössbauer spectra after ion irradiation. Mössbauer spectroscopy performed on a 12 h milled pristine sample (6 nm) confirmed the transition to a magnetically ordered state for temperatures less than 140 K. All the samples showed well-defined magnetic ordering at 5 K, whereas, at room temperature they were in a superparamagnetic state. From the magnetization studies performed on the irradiated samples, it was concluded that the saturation magnetization was enhanced. This was explained on the basis of SHI irradiation induced modifications in surface states of the nanoparticles.  相似文献   

19.
Corrosion of carbon steel in seashore salty soils containing 10, 20, and 34 wt% (saturated) water was investigated. The corrosion rate was measured and corrosion products were analyzed using Raman spectroscopy. It was found that carbon steel in the soil with 10 wt% water content had the largest corrosion rate and the corrosion was dominated by localized corrosion. The corrosion rate drops dramatically and turns to be general corrosion with increase of water content. The corrosion products in the soil with 20 and 34 wt% water content are mainly composed of α‐FeOOH, while in the soil with 10 wt% water content, the products show a delaminated structure of two layers with the inner layer mainly consisting of α‐FeOOH and the outer layer composed of Fe2O3 and Fe3O4. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Identification of all the compounds present in various coatings on steels is particularly difficult. Non-destructive, in-situ analysis is necessary if the fraction of each compound as well as its probable layering within the coating, is to be determined. Mössbauer spectroscopy is one valuable probe capable of uniquely identifying all iron compounds which form as coatings on steel and other iron alloy surfaces. To investigate a complete coating several criteria need to be considered. Removing the coating inevitably leaves a small and perhaps important component intact on the substrate. Therefore investigating the coating as it remains intact on the steel is important if complete identification of the iron compounds is to be made. This also preserves crystalline texture or preferred growth orientation within the coating to which the Mössbauer effect is sensitive. Mössbauer spectroscopy is a non-destructive technique which allows the integrity of the coating to be maintained during analysis. The combined transmission and scattering Mössbauer geometries generally result in accurate analysis of the coating composition. For the scattering geometry added information on compound layering is obtained if separate Mössbauer spectra are recorded using the re-emitted gamma rays as well as the conversion electrons and subsequently emitted X-rays. In-situ scattering Mössbauer spectroscopy has been used to characterize the iron--zinc alloys which form in the coatings of commercially produced corrosion resistant galvannealed sheet steel, a product of great interest to automotive producers. The results show that different amounts of four iron--zinc phases are present depending on the production conditions of the coating. The different phases are also distinctly layered. Mössbauer analyses of corrosion coatings formed on the surface of steels which have been exposed to different environments has also been undertaken. Materials include structural steels exposed for up to 25 years in marine, rural and industrial environments, and the interior surfaces of boiler pipes subjected to adverse chemical and temperature environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号