首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
半导体量子阱中电子自旋弛豫和动量弛豫   总被引:3,自引:0,他引:3       下载免费PDF全文
根据电子自旋轨道耦合对自旋极化弛豫影响的DP机理进一步导出了半导体中电子自旋弛豫与动量弛豫及载流子浓度的关系,并采用飞秒抽运探测技术在室温下测量AlGaAs/GaAs 多量子阱中载流子浓度在 1×1017—1×1018cm-3范围内,电子自旋弛豫时间由58ps增加至82 ps的变化情况,与理论计算值符合,说明了随着载流子浓度的增加,载流子间的频繁散射加速了电子动量驰豫,减弱了电子自旋轨道耦合作用,从而延长了电子自旋寿命. 关键词: 电子自旋轨道耦合 电子自旋弛豫和动量弛豫 飞秒光谱技术  相似文献   

2.
王启文  红兰 《物理学报》2012,61(1):17107-017107
在考虑Rashba自旋-轨道耦合的条件下, 采用二次幺正变换和变分方法研究了二维抛物量子点中由于电子与体纵光学声子的耦合作用形成的极化子在基态Zeeman分裂能级上的自旋弛豫过程.这一过程主要是通过吸收或发射一个形变势或压电声学声子完成.具体分析了强、弱耦合两种极限下极化子自旋弛豫率与外磁场、量子点半径、Landau因子参数、Rashba自旋轨道耦合参数的变化关系. 关键词: 自旋弛豫 极化子 Rashba自旋轨道耦合 量子点  相似文献   

3.
为研究空穴对自旋极化电子扩散的影响,提出用自旋密度光栅方法来观察电子自旋扩散过程。由飞秒激光在本征GaAs多量子阱中激发产生瞬态自旋光栅和瞬态自旋密度光栅,并用于研究电子自旋扩散和电子自旋双极扩散。实验测得自旋双极扩散系数Das =25.4 cm 2/s,低于自旋扩散系数Ds =113.0 cm 2/s,表明自旋密度光栅中电子自旋扩散受到空穴的显著影响。  相似文献   

4.
采用飞秒时间分辨圆偏振光抽运-探测光谱对In01Ga09N薄膜的电子自旋注入和弛豫进行了研究.获得初始自旋偏振度约为02,此结果支持在圆偏振光激发下,重、轻空穴带的跃迁强度比为3∶1,而不支持1∶1或1∶094的观点同时获得自旋偏振弛豫时间为490±70ps,定性分析了自旋弛豫机理,认为BAP机理是电子自旋弛豫的主要机理. 关键词: 电子自旋 InGaN 自旋极化 自旋弛豫  相似文献   

5.
常凯  杨文 《物理学进展》2011,28(3):236-262
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov-Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。  相似文献   

6.
半导体中自旋轨道耦合及自旋霍尔效应   总被引:1,自引:0,他引:1  
本文主要评述和介绍半导体微结构中自旋轨道耦合的研究和最近的研究进展。我们细致地讨论了半导体微结构中自旋轨道耦合的物理起源和窄带隙半导体量子阱中的自旋霍尔效应。我们发现目前国际上广泛采用的线性Rashba模型在较大的电子平面波矢处失效:即自旋轨道耦合导致的能带自旋劈裂不再随电子波矢的增加而增加,而是开始下降,即出现强烈的非线性行为。这种非线性的行为起源于导带和价带间耦合的减弱。这种非线性行为还会导致电子的D’yakonov Perel’自旋弛豫速率在较高能量处下降,与线性模型的结果完全相反。在此基础上,我们构造统一描述电子和空穴自旋霍尔效应的理论框架。我们的方法可以非微扰地计入自旋轨道耦合对本征自旋霍尔效应的影响。我们将此方法应用于强自旋轨道耦合的情形,即窄带隙CdHgTe/CdTe半导体量子阱。我们发现调节外电场或量子阱的阱宽可以作为导致量子相变和本征自旋霍尔效应的开关。我们的工作可能会为区别和实验验证本征自旋霍尔效应提供物理基础。  相似文献   

7.
基于二能级体系的速率方程,获得了非完全初始自旋偏振极化条件下的自旋偏振向上和向下 载流子布居弛豫的解析解. 基于小信号近似,给出了左、右旋圆偏振探测光的饱和吸收变化 的表达式. 此表达式中含有电子布居的初始自旋偏振度参数,因而用此表达式拟合实验数据 能够直接获取电子布居的初始自旋偏振度,而电子布居的初始自旋偏振度在自旋偏振输运研 究中是一个非常重要的关键参数. 实验获得了GaAs/AlGaAs多量子阱结构中光注入电子布居 的初始自旋偏振度及其弛豫时间常数. 关键词: 圆偏振抽运_探测技术 电子自旋偏振度 自旋偏振弛豫 GaAs量子阱  相似文献   

8.
简要介绍了瞬态光栅系统原理及光路的建设,包括瞬态光栅的产生与探测.采用了外差探测法(heterodyne detection),大大提高了信噪比.利用瞬态自旋光栅系统,研究了(110)方向生长的本征GaAs/AlGaAs单量子阱中自旋输运特性,测得室温下电子自旋的扩散常数Ds=551 cm/s. 关键词: 瞬态自旋光栅 自旋扩散 自旋输运 自旋弛豫  相似文献   

9.
磁量子结构中二维自旋电子的隧穿输运   总被引:3,自引:1,他引:2       下载免费PDF全文
郭永  顾秉林  川添良幸 《物理学报》2000,49(9):1814-1820
研究了零偏压和偏置电压作用下磁量子结构中自旋电子的隧穿输运性质. 结果表明电子自旋 输运的性质不仅取决于磁量子结构的构型、入射电子的能量和波矢, 而且取决于偏置电压. 在零偏压下, 由等同的磁垒磁阱构成的磁量子结构不具有自旋过滤的特点, 而由不等同的磁 垒磁阱构成的磁量子结构却具有较好的自旋过滤特点. 偏置电压极大地改变了磁量子结构中 电子的极化程度, 使得电子隧穿等同的磁垒磁阱构成的磁量子结构的输运性质也显著地依赖 于电子的自旋指向. 关键词: 磁量子结构 自旋电子 隧穿输运 自旋极化  相似文献   

10.
量子点双链中电子自旋极化输运性质   总被引:1,自引:0,他引:1       下载免费PDF全文
安兴涛  穆惠英  咸立芬  刘建军 《物理学报》2012,61(15):157201-157201
利用非平衡格林函数方法, 研究了与单个量子点耦合的量子点双链中电子自旋极化输运性质. 由于系统中Rashba自旋轨道耦合产生的自旋相关的相位, 电子通过上下两种路径时, 自旋不同的电子干涉情况不同, 从而导致了电极中的自旋极化流. 左右两电极间的偏压使单个量子点中的自旋积聚在很大能量区域内能够保持较大的值. 由于系统结构的左右不对称, 正负偏压下自旋积聚情况完全不同. 这些计算结果将有助于实验上设计新型的自旋电子学器件.  相似文献   

11.
《Physics letters. A》2014,378(18-19):1336-1340
Intrinsic electron spin relaxation due to the D'yakonov–Perel' mechanism is studied in monolayer Molybdenum Disulphide. An intervalley in-plane spin relaxation channel is revealed due to the opposite effective magnetic fields perpendicular to the monolayer Molybdenum Disulphide plane in the two valleys together with the intervalley electron–phonon scattering. The intervalley electron–phonon scattering is always in the weak scattering limit, which leads to a rapid decrease of the in-plane spin relaxation time with increasing temperature. A decrease of the in-plane spin relaxation time with the increase of the electron density is also shown.  相似文献   

12.
The carrier-density-dependent spin relaxation dynamics for modulation-doped GaAs/Al_(0.3)Ga_(0.7)As quantum weiis is studied using the time-resolved magneto-Kerr rotation measurements.The electron spin relaxation time and its in-plane anisotropy are studied as a function of the optically injected electron density.Moreover,the relative strength of the Rashba and the Dresselhaus spin-orbit coupling fields,and thus the observed spin relaxation time anisotropy,is further tuned by the additional excitation of a 532 nm continuous wave laser,demonstrating an effective spin relaxation manipulation via an optical gating method.  相似文献   

13.
Radicals generated by γ-irradiation of malonic acid and methyl malonic acid were studied as a function of temperature by inversion recovery, echo-detected saturation recovery and electron-electron double resonance (ELDOR) at X-band, and by continuous-wave saturation recovery at X-band and S-band. ELDOR reductions for malonic acid radical in polycrystalline and single-crystal samples indicate that nuclear spin relaxation is faster than both electron spin relaxation and cross relaxation between 93 and 233 K. Deuteration of the carboxylate protons caused the maximum ELDOR reduction to shift from about 110 to 150 K, consistent with the assignment of the rapid nuclear spin relaxation to hydrogen-bonded proton dynamics. ELDOR enhancements for both radicals formed in methyl malonic acid indicate that cross relaxation is faster than both electron spin relaxation and nuclear spin relaxation between 77 and 220 K. Enhanced cross relaxation and electron spin relaxation are attributed to the rotation of methyl groups at a rate comparable to the electron Larmor frequency. The temperature dependence of the enhancement of 1/T 1e was analyzed to determine the activation energies for methyl rotation. The same radical is formed in irradiated methyl malonic acid and L-alanine, but the barrier to rotation of the α-methyl is 500 K in the methyl malonic acid host and 1500 K in the L-alanine host, which indicates a large impact of the lattice on the barrier to rotation.  相似文献   

14.
Spin dynamics in the impurity band of a semiconductor with the spin-split spectrum is considered. Due to the splitting, phonon-assisted hops from one impurity to another axe accompanied by rotation of the electron spin, which leads to spin relaxation. The system is strongly inhomogeneous because of exponential variation of hopping times. However, at very small coupling an electron diffuses over a distance exceeding the characteristic scale of the inhomogeneity during the time of spin relaxation, so one can introduce an averaged spin relaxation rate. At larger values of coupling, the system is effectively divided into two subsystems: one where relaxation is very fast and another where relaxation is rather slow. In this case, spin decays due to the escape of the electrons from one subsystem to another. As a result, the spin dynamics is nonexponential and hardly depends on spin-orbit coupling. The text was submitted by the authors in English.  相似文献   

15.
Spin-lattice relaxation mechanisms in kaolinite have been reinvestigated by magic-angle spinning (MAS) of the sample. MAS is useful to distinguish between relaxation mechanisms: the direct relaxation rate caused by the dipole-dipole interaction with electron spins is not affected by spinning while the spin diffusion-assisted relaxation rate is. Spin diffusion plays a dominant role in 1H relaxation. MAS causes only a slight change in the relaxation behavior, because the dipolar coupling between 1H spins is strong. 29Si relaxes directly through the dipole-dipole interaction with electron spins under spinning conditions higher than 2 kHz. A spin diffusion effect has been clearly observed in the 29Si relaxation of relatively pure samples under static and slow-spinning conditions. 27Al relaxes through three mechanisms: phonon-coupled quadrupole interaction, spin diffusion and dipole-dipole interaction with electron spins. The first mechanism is dominant, while the last is negligibly small. Spin diffusion between 27Al spins is suppressed completely at a spinning rate of 2.5 kHz. We have analyzed the relaxation behavior theoretically and discussed quantitatively. Concentrations of paramagnetic impurities, electron spin-lattice relaxation times and spin diffusion rates have been estimated.  相似文献   

16.
The spin polarization features of an electron system and the relaxation of nonequilibrium spin excitations near an even-denominator fractional state of 3/2 in a two-dimensional electron system based on the GaAs/AlGaAs heterostructure are experimentally investigated. It is shown that the 3/2 state is a singular point in the filling factor dependence of the spin ordering of the two-dimensional electron system, at which the spin subsystem is rearranged. A giant slowing down of the relaxation of spin excitations to the ground state is revealed in a certain range of filling factors near filling factor 3/2.  相似文献   

17.
It is shown that the D’yakonov-Perel’ spin relaxation mechanism in a two-dimensional electron gas is controlled not only by the electron-momentum relaxation that accounts for the electron mobility but also by the electron-electron collisions. The kinetic equation describing the mixing of electron spin in the k space was solved, and the spin relaxation time τs caused by frequent electron-electron collisions was determined. The time τ s was calculated for a nondegenerate electron gas both with and without allowance for the exchange interaction.  相似文献   

18.
Y. Zhou  M.W. Wu 《Solid State Communications》2009,149(45-46):2078-2081
A spin relaxation mechanism is proposed based on a second-order spin–flip intersubband spin–orbit coupling together with the spin-conserving scattering. The corresponding spin relaxation time is calculated via the Fermi golden rule. It is shown that this mechanism is important in symmetric GaAs (110) quantum wells with high impurity density. The dependencies of the spin relaxation time on electron density, temperature and well width are studied with the underlying physics analyzed.  相似文献   

19.
An ab initio method has been proposed for calculating the spin relaxation time of excited electrons in metals in the framework of the GW method with inclusion of the spin-orbit coupling. The time and length of spin relaxation in Al, Cu, Au, Nb, and Ta have been calculated. The concept of the spin-flip phase space has been introduced. It has been demonstrated that the ratio between the spin relaxation time and the lifetime of the excited electron is well explained within this concept. The time and length of spin relaxation in Nb appear to be considerably shorter than those in Al, Cu, and Au. These quantities in Ta are especially small in accordance with the strong spin-orbit coupling. A comparison of the results with the previous data on the time and length of spin relaxation due to the interaction with impurities and phonons shows that, at an excited electron energy of the order of 1 eV, the inelastic electron-electron scattering in the presence of spin-orbit coupling is a dominant mechanism of spin relaxation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号