首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface reaction on titanium due to pulsed Nd:YAG laser irradiation in a nitrogen atmosphere was investigated using X-ray photoelectron spectroscopy (XPS). The laser, with a wavelength of 532 nm (SHG mode), was irradiated on a titanium substrate in an atmosphere-controlled chamber, and then the substrate was transported to an XPS analysis chamber without exposure to air. This in situ XPS technique makes it possible to clearly observe the intrinsic surface reaction. The characteristics of the surface layer strongly depend on the nitrogen gas pressure. When the pressure is 133 kPa, an oxynitride and a stoichiometric titanium nitride form the topmost and lower surface layers on the titanium substrate, respectively. However, only a nonstoichiometric titanium oxide layer containing a small amount of nitrogen is formed when the pressure is lower than 13.3 kPa. Repetition of laser shots promotes the formation of the oxide layer, but the formation is completed within a few laser shots. After the initial structure is formed, the chemical state of the surface layer is less influenced by the repetition of laser shots.  相似文献   

2.
The peculiarities of interaction of hydrogen ions with a titanium target and its surface oxide layer were studied. Two ways of modification of the surface oxide layers of titanium targets for increasing the lifetime of neutron tubes were proposed: (1) deposition of an yttrium oxide barrier layer on the target surface; (2) implementation of neutron tube work regime in which the target is irradiated with ions with energies lower than 1000 eV between high-energy ion irradiation pulses.  相似文献   

3.
We discuss the solutions of the inverse problem of multiangle ellipsometry for titanium with a natural surface layer, namely, the determination of the thickness of the near-surface layer and optical characteristics by use of which one can interpret the titanium structure. It turned out that the studied samples of pure polycrystalline titanium have a rather thick inhomogeneous layer of polycrystalline titanium with oxygen and, on this layer, there is a surface layer similar to titanium oxide. The data on the optical characteristics of pure polycrystalline titanium agree well with those determined earlier by other optical methods.  相似文献   

4.
This paper addresses a hydrogen outgassing mechanism in titanium materials with extremely low outgassing property by investigating the distribution of hydrogen atoms concentration in depth below the surface, and the activation energy for desorption of dissolved hydrogen atoms into the boundary region between the surface oxide layer and the bulk titanium and that of adsorbed hydrogen atoms on the surface. The distribution of hydrogen atoms concentration in depth below the surface was analyzed by a time-of-flight secondary ion mass spectrometry (TOF-SIMS). The activation energy for desorption of dissolved hydrogen atoms was estimated by the thermal desorption spectroscopy (TDS) measurement with various heating rates. The activation energy for desorption of adsorbed hydrogen atoms was estimated by the temperature dependence of the outgassing rate in titanium material. In the titanium material, hydrogen atoms show maximum concentration at the boundary between the surface oxide layer and the bulk titanium. Concentration of hydrogen atoms decreases rapidly at the surface oxide layer, while it decreases slowly in the deep region below the surface layer-bulk boundary by the vacuum evacuation without/with the baking process. The activation energy for desorption of 1.02 eV of dissolved hydrogen atoms into the surface layer-bulk boundary is about three times as large as that of 0.38 eV of the adsorbed hydrogen atoms on the surface. These results suggest that the hydrogen outgassing mechanism in the titanium material is composed the follows processes, i.e. the slow hydrogen atoms diffusion at the surface layer-bulk boundary, quick hydrogen atoms diffusion at the surface oxide layer and rapid desorption of adsorbed hydrogen atoms on the surface. This outgassing mechanism gives very low hydrogen concentration near the surface, which results in the extremely low outgassing rate in titanium materials.  相似文献   

5.
The oxidation of Ti films with thickness from 5 to 100 nm was performed in air at room temperature. The thickness and roughness of metal and oxide layers were determined by neutron and X-ray reflectometry. The thin titanium films were found to be oxidized to a greater depth; than the thick ones. However the metal layer was found to exist even in the thinnest (5 nm) samples, as the direct measuring of electrical resistance of the films has confirmed. The optimal parameters of titanium films utilizable in polarizing coatings of neutron optics were estimated. The AFM data on the microrelief and the phase homogeneity of the Ti nano-film surface were obtained.  相似文献   

6.
本文利用原子层沉积技术在金刚石表面沉积了一层氧化钛涂层,该方法使得金刚石中的浅层(深度小于10 nm)NV~-色心的电荷态变得稳定,同时其荧光强度增强至大约原本的2倍.这种表面涂层技术能够为固态量子体系提供厚度可控的保护层或钝化层,同时又不损伤或腐蚀体系表面,有望成为一种固态量子体系钝化或封装的方法.  相似文献   

7.
The nitridation of titanium (Ti) caused by a Q-switched Nd:YAG laser under nitrogen gas atmosphere was investigated in situ using X-ray photoelectron spectroscopy (XPS). A laser having a wavelength of 1064 nm and 532 nm (SHG mode) was irradiated on a titanium substrate in an atmosphere-controlled chamber, and the substrate was then transported to an XPS analysis chamber without exposing it to air. The characteristics of the surface layer strongly depend on the laser power. When the power is relatively low, a titanium dioxide layer containing a small amount of nitrogen is formed on the substrate. Laser irradiation beyond a certain laser power is required to obtain a stoichiometric titanium nitride (TiN) layer. A TiN layer and an oxynitride layer with a TiOxNy-like structure are formed as the topmost and the lower surface layer, respectively, when the laser power exceeds this threshold value. The threshold laser power strongly depends on the wavelength of the laser, and this threshold value for the 532-nm laser is quite lower than that for the 1064-nm laser.  相似文献   

8.
利用波长为800 nm的飞秒激光,在空气和去离子水中诱导钛表面形成不同的周期条纹结构。在空气中,激光能量密度为0.265 J/cm2时,钛表面主要形成周期为500~560 nm低空间频率条纹结构;激光能量密度为0.102 J/cm2时,主要形成的是周期为220~340 nm高空间频率条纹结构。两种条纹均垂直于入射激光偏振方向,且条纹周期随着脉冲重叠数的增大而增大。在水中,除形成垂直激光偏振方向、周期为215~250 nm的高空间频率条纹结构,还形成了平行于激光偏振方向且周期约为入射激光波长八分之一的高空间频率条纹结构。利用表面等离子体理论、二次谐波及Sipe理论对各种周期条纹结构的形成机理进行分析,发现周期条纹结构的形成与钛表面氧化层有密切的关系。  相似文献   

9.
PIIID复合强化处理轴承钢表面TiN膜层的XPS表征   总被引:1,自引:0,他引:1  
用等离子体浸没离子注入与沉积(PIIID)复合强化新技术在AISI52100轴承钢基体表面成功合成了硬而耐磨的氮化钛薄膜。膜层表面的化学组成和相结构分别用X射线衍射(XRD)和X射线光电子能谱(XPS)表征;膜层表面的原子力显微镜(AFM)形貌显示出TiN膜结晶完整,结构致密均匀。XRD测试结果表明,TiN在(200)晶面衍射峰最强,具有择优取向。Ti(2p)的XPS谱峰泰勒拟合分析揭示出,Ti(2p1/2)峰和Ti2p3/2峰均有双峰出现,表明氮化物中的Ti至少存在不同的化学状态;N(1s)的XPS谱峰在396.51, 397.22和399.01 eV附近出现了三个分峰,分别对应于TiNOy,TiN和N—N键中的氮原子。结合O(1s)的XPS结果,证实膜层中除生成有稳定的TiN相外,还有少量钛的氧化物和未参与反应的单质氮。整个膜层是由TiN,TiO2,Ti—O—N化合物和少量单质氮组成的复合体系。  相似文献   

10.
用光触发同步采集技术在多光谱系统上测定纳米铝粉与环氧丙烷快速反应的点火延迟时间和基团光谱强度,得出诱导激波作用下纳米铝粉的点火机理。X射线衍射(XRD)数据表明,等离子体方法生产的纳米铝粉由于活性较高表面有部分氧化,电子能谱(XPS)给出结果表明氧化层厚度~3nm,且其反应生成物的电子能谱显示氧化层厚度随诱导激波强度增加而相应增大。单色仪测定AlO(464.8nm)点火时间表明随诱导激波强度增大,纳米铝粉在环氧丙烷反应系统中的抛撒状态分布更均匀,颗粒受热面增大,受热率明显增大,且激波作用下铝粉表面3nm厚氧化层也极易被熔破,使内核活性铝气化与反应系统中的氧原子及含氧分子反应放热而达到点火状态。  相似文献   

11.
采用平面波超软赝势方法计算了锐钛矿型TiO2(101)面的表面能和表面原子弛豫结构.首先对TiO2(101)面的6种不同的表面原子终止结构的体系总能量进行了计算,结果表明终止原子为两配位的O原子、次层为五配位的Ti原子的表面结构最为稳定.针对该表面研究了表面能和原子弛豫与模型中原子层数和真空厚度的关系,当原子层数为12层,真空厚度为0.4nm时,表面能收敛度小于0.01J/m2.研究发现:表面上两配位的O原子向里移动约0.0012nm,五配 关键词: 第一性原理 2')" href="#">TiO2 表面结构 弛豫  相似文献   

12.
The effect of titanium hydride on the formation of nanoporous TiO2 on Ti during anodization has been investigated by X-ray photoelectron spectroscopy, grazing incident X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Titanium hydride (TiH2) was formed after cathodization, profoundly impacting the formation of nanoporous TiO2 on Ti by anodization. Oxide layer and nanocrystal structure were observed after anodization with cathodic pretreatments. A multi-nanoporous TiO2 layer was formed on the titanium. The titanium hydride is a nanostructure. The nanostructure is directly changed to nanoporous TiO2 by a dissolution reaction during anodization. The nanoporous layer is difficult to form without cathodization. The nanostructural TiH2 is important in forming a nanoporous TiO2 layer. Anodization treatment with cathodic pretreatment not only yields a titanium surface with a multi-nanostructure, but also transforms the titanium surface into a nanostructured titanium oxide surface.  相似文献   

13.
The stability of highly acidic metal oxide surface treatments on rutile titanium dioxide nanopowders (40 nm nominal particle size) is examined. Dispersions are characterized in terms of their sedimentation behavior and light scattering pattern. Using elliptically polarized light scattering (EPLS), agglomerates are identified as fractal structures and size analysis is performed according to the measured fractal dimension. The effect of ultrasonication on agglomerate size and structure (compactness) is quantified for tungsten oxide and molybdenum oxide surface treatments, as well as untreated titanium oxide. Surface treatments are shown to increase dispersion stability, as witnessed by the decreased size of large agglomerates and sedimentation behavior. The EPLS fractal studies, combined with ultrasonication analysis, reveals information of agglomerate shapes, primary particle bonds and structures, and agglomerate growth mechanisms.  相似文献   

14.
The effect of a surface charge on the characteristics of silicon surface barrier detectors with a nanometer oxide layer is studied. Interaction between the surface charge and a metal or a semiconductor at an oxide layer thickness of less than 1 or more than 2 nm, respectively, is taken into account. The application of silicon detectors with an oxide layer having a thickness of more than 2 nm in detecting nuclear resonance reactions is considered.  相似文献   

15.
The surface hardness of titanium modified by laser irradiation at different wavelengths in nitrogen atmosphere was investigated. Further, surface characteristics such as morphology, chemical state, and chemical composition in the depth direction were also studied. The size and depth of the craters observed in the laser-irradiated spots increased monotonically with an increase in the laser power. Furthermore, the crater formed by the 532-nm laser was deeper than that formed by the 1064-nm laser for the same laser power. Laser power beyond a certain threshold value was required to obtain a titanium nitride layer. When the laser power exceeds the threshold value, a titanium nitride layer of a few tens of nanometers in thickness was formed on the substrate, whereas a titanium oxide layer containing small amounts of nitrogen was formed when the laser power is below the threshold value. Thus, it was shown that laser irradiation using appropriate laser parameters can successfully harden a titanium substrate, and the actual hardness of the titanium nitride layer, measured by nanoindentation, was approximately five times that of an untreated titanium surface.  相似文献   

16.
《Composite Interfaces》2013,20(8-9):711-724
Polyacrylonitrile fibers were electrospun yielding diameters in the range of 50 to 200 nm. These nanofibers were then immersed in an aqueous coating solution to deposit a continuous film of titanium dioxide on the surface. In order to shorten the coating time and optimize the metal oxide layer thickness, the fibers were surface functionalized by immersion in sodium hydroxide to have carboxylic acid groups. Polyelectrolytes were electrostatically adsorbed to some of the functionalized fiber surface samples prior to metal oxide deposition. The metal oxide nucleation density was compared after three hours for nanofibers with a cationic surface, an anionic surface, a carboxylic acid surface, and an untreated surface. Fibers with the carboxylic acid surface exhibited the highest nucleation density, which led to the shortest coating time. Such polymer-metal oxide nanoscale composite structures are expected to be of great utility in a number of applications, including sensors, photovoltaic cells, and catalytic surfaces.  相似文献   

17.
Porous TiO2 layer was fabricated on the surface of commercially pure titanium using an anodic spark oxidation technique for biomedical application, and subsequent hot water treatment was performed to modify the resultant oxide layer. The microstructure features and shear fracture characteristics of anodic oxide layer before and after water treatment were investigated. Results show that before water treatment, the oxide layer exhibited a porous surface with few nanometer features and consisted of poorly crystallized oxides, and an inner layer containing numerous cavities was observed near the oxide-substrate interface. After water treatment, the crystallinity degree of oxide layer was increased significantly and a nanostructured surface layer was obtained. The shear fracture characteristics of oxide layer were greatly influenced by its microstructure features. Before water treatment, the shear fracture took place primarily within the cavity-containing layer, resulting in a pitted fracture surface on the substrate side. However, after water treatment, the shear fracture occurred mainly along the bottom surface of nanostructured surface layer and the shear strength of oxide layer decreased obviously.  相似文献   

18.
The influence of the carbamide concentration on the nitrocarburizing temperature and changes in the mass of titanium samples, which are related to the anodic dissolution and high-temperature oxidation of titanium in a vapor?gas shell, is investigated. The modified layer structure is revealed to contain an external oxide layer (rutile) and an intermediate diffusion layer whose microhardness reaches 770 HV. It is demonstrated that an increase in the nitrocarburizing temperature stimulates growth in the oxide-layer thickness, and the diffusion-layer thickness depends on the carbamide concentration in the solution. It is found that, at 850°С, the surface roughness decreases from 1.0 to 0.3–0.5 μm and the wear rate reduces from 6.7 × 10–7 to (1.2–1.7) × 10–7 due to nitrocarburizing in an electrolyte incorporating 10–15 wt % ammonium chloride and 10–12.5 wt % carbamide.  相似文献   

19.
In this work, laser induced breakdown spectroscopy (LIBS) is used to determine the composition of titanium oxide film produced by anodized of Ti6Al4V alloy. We have used Ti lines in the spectral region between 470–520 nm to determine temperature of the plasma generated on anodized surface of Ti6Al4V alloy for temperature determination by Boltzmann plot method. In order to measure the content of oxygen and titanium ratio on the surface the alloy, we have used the oxygen lines 777.194, 777.417 and 777.539 nm, and titanium lines 780.597 and 782.491 nm observed in an ambient of argon. Finally, we report the possibilities for the determination of the coating chemical composition using LIBS.  相似文献   

20.
Linear oxide patterns were formed by local anodic oxidation (LAO) using an atomic force microscope (AFM) on an n-doped GaAs substrate, a 10-nm-thick titanium layer, and on shallow GaAs/AlGaAs-based heterostructures capped either with a 5-nm-thick undoped GaAs layer or a 2-nm-thick undoped InGaP layer. Each heterostructures had a 2DEG buried at a specific depth between 22 and 45 nm. LAO was performed in contact and non-contact AFM modes with the aim to explain the phenomenon of single and double line formation depending on material oxidized. The occurrence of the phenomenon was also simulated. The results showed that the occurrence of the double lines is linked with the thickness of native oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号