首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The normalized amplitude quotient (NAQ), defined as the ratio between the peak-to-peak amplitude of the flow pulse and the negative peak amplitude of the differentiated flow glottogram and normalized with respect to period time, has been shown to be related to glottal adduction. Glottal adduction, in turn, affects mode of phonation and hence perceived phonatory pressedness. The relationship between NAQ and perceived phonatory pressedness was analyzed in a material collected from a professional female singer and singing teacher who sang a triad pattern in breathy, flow, neutral, and pressed phonation in three different loudness conditions (soft, middle, loud). In addition, she also sang the same triad pattern in four different styles of singing, classical, pop, jazz, and blues, in the same three loudness conditions. A panel of experts rated the degree of perceived phonatory press along visual analogue scales. Comparing the obtained mean rated pressedness ratings with the mean NAQ values for the various triads showed that about 73% of the variation in perceived pressedness could be accounted for by variations of NAQ.  相似文献   

2.
Phonation threshold pressure has been defined as the minimum subglottalpressure to generate phonation. Previous research has indicated that children may habitually employ higher subglottal pressures than adults. In the present investigation sound pressure level (SPL) and subglottal pressures at different pitch levels were measured at and above phonation threshold in nine children. Phonation threshold values were scattered in reasonable agreement with Titzes' prediction, although a discrepancy was noted regarding the frequency dependence in some voices. At normal conversational loudness and loudest level of phonation the children's PS values were between two to four and four to eight times the predicted threshold values, respectively. At normal conversational loudness and habitual pitch subglottal pressures were lower than those previously observed for children, but similar to those found for female adults. The SPL in softest and loudest phonation were somewhat lower as compared to previous phonetogram data for children and for female adults. At normal loudness and habitual pitch the SPL values were similar to those of female adults. For a doubling of Ps mean SPL increased by 10.5 dB on the average.  相似文献   

3.
4.
The effects of prolonged (5x45 minute) reading (vocal loading) on fundamental frequency (F0), sound pressure level (SPL), subglottal (intraroral) pressure (p), and two glottal flow waveform parameters (AC amplitude of glottal flow, f, and negative peak amplitude of differentiated flow (d) of normal female and male subjects (N = 80) were studied. Two rest (morning and noon) and three loading (two in the morning and one in the afternoon) samples were recorded and analyzed. The glottal waveforms were obtained by inverse filtering of the acoustic pressure waveforms of speaking voice samples. The analyses were based on measurement and inverse filtering of the first stressed syllable of "paappa" words repeated 3x5 times for normal, as soft as possible, and as loud as possible phonation. In normal phonation the parameter values changed statistically significantly due to loading. In many cases the values obtained in the morning samples changed after the first loading session. This is interpreted as a vocal "warming-up effect." Especially in soft phonation p, d, and f were sensitive indicators of vocal loading. In both normal and soft phonation, the SPL, p, d, and f values tended to rise due to prolonged reading in the morning and afternoon samples, indicating increased effort (normal phonation) and a rise in the phonatory threshold (soft phonation). The lunch break vocal rest ("rest effect") considerably affected the parameter values in many cases.  相似文献   

5.
The audio signal from five professional baritones was analyzed by means of spectrum analysis. Each subject sang syllables [pae] and [pa] from loudest to softest phonation at fundamental frequencies representing 25%, 50%, and 75% of his total range. Ten subglottal pressures, equidistantly spaced between highest and lowest, were selected for analysis along with the corresponding production of the vowels. The levels of the first formant and singer's formant were measured as a function of subglottal pressure. Averaged across subjects, vowels, and F0, a 10-dB increase at 600 Hz was accompanied by a 16-dB increase at 3 kHz.  相似文献   

6.
Aerodynamic measurements of patients with parkinson''s disease   总被引:2,自引:0,他引:2  
Patients with Parkinson's disease commonly complain of voice dysfunction. Most of these complaints can be attributed to the known muscular control disorders that occur with Parkinson's disease. However, the manifestations of Parkinson's disease muscular dysfunction on parameters of phonation such as airflow, laryngeal resistance, and subglottal pressure necessary to sustain phonation have not been reported. The purpose of this study was to examine the aerodynamic characteristics of flow, laryngeal resistance, and phonation pressure threshold in a heterogeneous population of patients with Parkinson's disease who had varying voice complaints and to compare the data to similar studies for human subjects who have no voice complaints. The studies used a noninvasive method of detecting flow and acoustic signal from the lips, oral cavity and nose during phonation and used an external flow interruption technique to estimate subglottal pressure and phonation threshold pressure. About one third of the patients could not produce phonation at regular and loud intensities that were comfortable for normal subjects. The mean subglottal pressure (SGP) of patients with Parkinson disease who could produce 3 levels of intensity comparable to normal subjects was significantly higher than the mean SG-Ps for normal subjects for the same intensities of vocal production. The mean flow rates measured from patients with Parkinson's disease at the same 3 intensities of phonation was not significantly greater than in normal subjects. This indicated that the mean laryngeal resistance calculated for patients with Parkinson's disease was notably and significantly greater than mean laryngeal resistance calculated for normal subjects at the same intensity levels. The mean vocal efficiency (VE) for normal subjects was not significantly different than the mean VE for patients with Parkinson's disease, because greater pressure was used to generate similar flow and acoustic energy. These findings correlate with the perception of patients with Parkinson's disease that they are working harder to produce phonation. The observation of notably greater laryngeal resistance and phonation threshold pressure in patients with Parkinson's disease suggests that further studies of the glottic aperture in patients with Parkinson' disease may be useful for understanding how this common motor disorder disturbs phonation.  相似文献   

7.
Subglottal pressure is one of the main voice control factors, controlling vocal loudness. In this investigation the effects of subglottal pressure variation on the voice source in untrained female and male voices phonating at a low, a middle, and a high fundamental frequency are analyzed. The subjects produced a series of /pae/ syllables at varied degrees of vocal loudness, attempting to keep pitch constant. Subglottal pressure was estimated from the oral pressure during the /p/ occlusion. Ten subglottal pressure values, approximately equidistantly spaced within the pressure range used, were identified, and the voice source of the vowels following these pressure values was analyzed by inverse filtering the airflow signal as captured by a Rothenberg mask. The maximum flow declination rate (MFDR) was found to increase linearly with subglottal pressure, but a given subglottal pressure produced lower values for female than for male voices. The closed quotient increased quickly with subglottal pressure at low pressures and slowly at high pressures, such that the relationship can be approximated by a power function. For a given subglottal pressure value, female voices reached lower values of closed quotient than male voices.  相似文献   

8.
Intraoral pressure and subglottal pressure, derived from tracheal puncture, were recorded with the electroglottographic signal for one normal speaking male during phonation. The mean subglottal pressure for vowels was also estimated by interpolating the intraoral pressure from surrounding /p/ occlusions. The pressure measurements were highly correlated (r = 0.98) and there were small pressure value differences (on average <2%). The effects of varying speech rate and mode of phonation on the pressure measurements are discussed. A decrease in pressure from the mean subglottal pressure for the open phase and an increase for the closed phase was found during the glottal vibratory cycles.  相似文献   

9.
This article describes experiments carried out in order to gain a deeper understanding of the mechanisms underlying variation of vocal loudness in singers. Ten singers, two of whom are famous professional opera tenor soloists, phonated at different pitches and different loudnesses. Their voice source characteristics were analyzed by inverse filtering the oral airflow signal. It was found that the main physiological variable underlying loudness variation is subglottal pressure (Ps). The voice source property determining most of the loudness variation is the amplitude of the negative peak of the differentiated flow signal, as predicted by previous research. Increases in this amplitude are achieved by (a) increasing the pulse amplitude of the flow waveform; (b) moving the moment of vocal fold contact earlier in time, closer to the center of the pulse; and (c) skewing the pulses. The last mentioned alternative seems dependent on both Ps and the ratio between the fundamental frequency and the first formant. On the average, the singers doubled Ps when they increased fundamental frequency by one octave, and a doubling of the excess Ps over threshold caused the sound pressure level (SPL) to increase by 8–9 dB for neutral phonation, less if mode of phonation was changed to pressed. A shift of mode of phonation from flow over neutral to pressed was associated with a reduction of the peak glottal permittance i.e., the ratio between peak transglottal airflow to Ps. Flow phonation had the most favorable relationship between Ps and SPL.  相似文献   

10.
A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.  相似文献   

11.
According to experience in voice therapy and singing pedagogy, breathing habits can be used to modify phonation, although this relationship has never been experimentally demonstrated. In the present investigation we examine if lung volume affects phonation. Twenty-four untrained subjects phonated at different pitches and degrees of vocal loudness at different lung volumes. Mean subglottal pressure was measured and voice source characteristics were analyzed by inverse filtering. The main results were that with decreasing lung volume, the closed quotient increased, while subglottal pressure, peak-to-peak flow amplitude, and glottal leakage tended to decrease. In addition, some estimates of the amount of the glottal adduction force component were examined. Possible explanations of the findings are discussed.  相似文献   

12.
Changes in mean fundamental frequency accompanying changes in loudness of phonation are analyzed in 9 professional singers, 9 nonsingers, and 10 male and 10 female patients suffering from vocal functional dysfunction. The subjects read discursive texts with noise in earphones, and some also at voluntarily varied vocal loudness. The healthy subjects phonated as softly and as loudly as possible at various fundamental frequencies throughout their pitch ranges, and the resulting mean phonetograms are compared. Mean pitch was found to increase by about half-semitones per decibel sound level. Grossly, the subject groups gave similar results, although the singers changed voice pitch more than the nonsingers. The voice pitch changes may be explained as passive results of changes of subglottal pressure required for the sound level variation.  相似文献   

13.
The change in fundamental frequency with subglottal pressure in phonation is quantified on the basis of the ratio between vibrational amplitude and vocal fold length. This ratio is typically very small in stringed instruments, but becomes quite appreciable in vocal fold vibration. Tension in vocal fold tissues is, therefore, not constant over the vibratory cycle, and a dynamic tension gives rise to amplitude-frequency dependence. It is shown that the typical 2-6 Hz/cm H2O rise in fundamental frequency with subglottal pressure observed in human and canine larynges is a direct and predictable consequence of this amplitude-frequency dependence. Results are presently limited to phonation in the chest register.  相似文献   

14.
Estimates of subglottal pressure in six professional male country singerswere obtained during the /p/ occlusion while the subjects spoke, sang a country tune, and sang the tune of the United States national anthem. The subglottal pressure values, which were very similar in both the speech-like and singing-mode syllables, usually measured below 45 cm of water column, but they ranged as high as 59 cm. The sound pressure level in singing was also measured and was lower than that discovered in classically trained singers at high subglottal pressures.  相似文献   

15.
A phonetogram is a graph showing the sound pressure level (SPL) of softest and loudest phonation over the entire fundamental frequency range of a voice. A physiological interpretation of a phonetogram is facilitated if the SPL is measured with a flat frequency curve and if the vowel /a/ is used. It was found that in soft phonation, the SPL is mainly dependent on the amplitude of the fundamental, while in loud phonation, the SPL is mainly determined by overtones. The short-term SPL variation, i.e., the level variation within a tone, was about 5 dB in soft phonation and close to 2 dB in loud phonation. For two normal voices the long-term SPL variation, calculated as the mean standard deviation of SPL for day-to-day variation, was found to be between 2.4 and 3.4 dB in soft and loud phonation. Speakers who raise their loudness of phonation also tend to raise their mean voice fundamental frequency. Measures obtained from speaking at various voice levels were combined so that typical pathways could be introduced into the phonetogram. The average slope of these pathways was 0.3–0.5 st/dB for healthy subjects. Averaged phonetograms for male singers and male nonsingers did not differ significantly, but averaged phonetograms for female singers and female nonsingers did, in that the upper contour was higher for the female singers. Averaged phonetograms for female patients with non-organic dysphonia showed significantly lower SPL values in loudest phonation as compared to healthy female subjects, while no corresponding difference was seen for males in this regard. With respect to the SPL values for softest phonation, male dysphonic patients showed significantly higher SPL values than healthy male subjects, while no corresponding difference was seen in female subjects. The subglottal pressure mirrored these phonetogram differences between healthy and pathological voices. The averaged phonetograms of female patients after voice therapy showed an increased similarity with those of normal voices. For the male patients the averaged phonetogram did not change significantly after therapy.  相似文献   

16.
According to Wyke and Kirchner (Wyke B, Kirchner J. Neurology of the larynx. In: Hinchcliffe R, Harrison D, eds. Scientific foundation of otolaryngology. London: William Heinemann Medical Books, 1976:546–66) mechanoreceptors in the subglottal mucosa play a significant role in the control of laryngeal muscle activity in response to changes of subglottal pressure during phonation. In singers this pressure is adapted not only to phonatory loudness but also to fundamental frequency. By spraying Xylocaine solution with a needle inserted into the trachea through the anterior gap between the cricoid and thyroid cartilages, the subglottal mucosa was anesthetized in three singers. The effects on subglottal pressure and fundamental frequency of this anesthesia were examined. The pressure effects varied between the subjects, whereas the fundamental frequency accuracy was adversely affected in all three subjects. The implications of these findings are discussed.  相似文献   

17.
Thyroplasty type I is one of several surgical treatments in which improving the voice of unilateral vocal fold paralysis is the ultimate objective. The goal of the surgery is the medialization of the paralyzed vocal fold. The purpose of this study is to evaluate the effectiveness of thyroplasty type I through acoustical analysis, aerodynamic measures, and quantitative videostroboscopic measurements. We report on 20 patients with unilateral vocal cord paralysis who underwent thyroplasty type I. We performed preoperative and postoperative video image analysis (normalized glottal gap area) and computer-assisted voice analysis (fundamental frequency, jitter, shimmer, noise-to-harmonic ratio, mean phonation time, mean flow rate, mean subglottic pressure) in all patients. The glottal gap was significantly reduced after thyroplasty type I. Postoperative voice quality was characterized by an improved pitch and amplitude pertubation (jitter and shimmer), phonation time (mean phonation time), and subglottic pressure (mean subglottic pressure). Thyroplasty type I is an effective method for regaining glottal closure and vocal function.  相似文献   

18.
Five professional operatic baritone singers' voice-source characteristics were analyzed by means of inverse filtering of the flow signal as captured by a flow mask. The subjects sang a long sustained diminuendo, from loudest to softest, three times on the vowels [a:] and [ae:] at fundamental frequencies representing 25%, 50%, and 75% of their total pitch range as measured in semitones. During the diminuendos, they repeatedly inserted the consonant [p] so that associated subglottal pressures could be estimated from the oral pressure during the p-occlusions. Pooling the three takes of each condition, ten subglottal pressures, equidistantly spaced between highest and lowest, were selected for analysis. Sound-pressure levels (SPL), peak-to-peak glottal airflow, maximum flow declination rate, closed quotient, glottal dc flow, and the level difference between the two lowest partials of the source spectrum (H1-H2) were determined. All parameters except the glottal dc flow showed a systematic variation with subglottal pressure or the fractional excess pressure over threshold. The results are given in terms of equations representing the average across subjects for the relation between subglottal pressure and each of the mentioned voice-source parameters.  相似文献   

19.
Normalized amplitude quotient (NAQ) is presented as a method to parametrize the glottal closing phase using two amplitude-domain measurements from waveforms estimated by inverse filtering. In this technique, the ratio between the amplitude of the ac flow and the negative peak amplitude of the flow derivative is first computed using the concept of equivalent rectangular pulse, a hypothetical signal located at the instant of the main excitation of the vocal tract. This ratio is then normalized with respect to the length of the fundamental period. Comparison between NAQ and its counterpart among the conventional time-domain parameters, the closing quotient, shows that the proposed parameter is more robust against distortion such as measurement noise that make the extraction of conventional time-based parameters of the glottal flow problematic. Experiments with breathy, normal, and pressed vowels indicate that NAQ is also able to separate the type of phonation effectively.  相似文献   

20.
A single female professional vocal artist and pedagogue sang examples of “twang” and neutral voice quality, which a panel of experts classified, in almost complete agreement with the singer's intentions. Subglottal pressure was measured as the oral pressure during the occlusion during the syllable /pae/. This pressure tended to be higher in “twang,” whereas the sound pressure level (SPL) was invariably higher. Voice source properties and formant frequencies were analyzed by inverse filtering. In “twang,” as compared with neutral, the closed quotient was greater, the pulse amplitude and the fundamental were weaker, and the normalized amplitude tended to be lower, whereas formants 1 and 2 were higher and 3 and 5 were lower. The formant differences, which appeared to be the main cause of the SPL differences, were more important than the source differences for the perception of “twanginess.” As resonatory effects occur independently of the voice source, the formant frequencies in “twang” may reflect a vocal strategy that is advantageous from the point of view of vocal hygiene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号