首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cd1−xMnxS nano-crystalline films (0 ≤ x ≤ 0.5) were formed on glass substrates by thermal evaporation technique at room temperature (300 K). AFM studies showed that all the films were in nano-crystalline form with the grain size varying in the range between 36 and 58 nm and exhibited hexagonal structure of the host material. The lattice parameters varied linearly with composition, following Vegard's law in the entire composition range. The nanohardness and Young's modulus decreased sharply with ‘Mn’ content upto x = 0.3 and increased with high Mn content.  相似文献   

2.
Fe-based cadmium sulfide alloy thin films have been grown on c-plane sapphire substrates by a low-pressure metalorganic chemical vapor deposition technique at different growth temperatures. From X-ray diffraction and absorption spectra of the samples, the evolutions with growth temperature show an inflexion at the growth temperature of 300 °C. This was attributed to the phase transformation from zinc-blende to wurtzite. With increasing growth temperature from 270 °C to 360 °C, Fe concentration in the films increases monotonously. The electronic states of Cd1−xFexS were investigated by X-ray photoelectron spectroscopy. Magnetic measurement shows Van Vleck paramagnetism of the Cd1−xFexS thin film in the temperature region below 7 K.  相似文献   

3.
We have investigated the temperature and composition dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x ≈ 0.1-0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. The efficient PL is peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. The band-gap energy of the Ga1−xMnxN layers decreased with increasing temperature and manganese composition. The band-gap energy of the Ga1−xMnxN layers was modeled by the Varshni equation and the parameters were determined to be α = 2.3 × 10−4, 2.7 × 10−4, 3.4 × 10−4 eV/K and β = 210, 210, and 230 K for the manganese composition x = 0.1%, 0.2%, and 0.8%, respectively. As the Mn concentration in the Ga1−xMnxN layers increased, the temperature dependence of the band-gap energy was clearly reduced.  相似文献   

4.
The lead salts and their alloys are extremely interesting semiconductors due to their technological importance. The fabrication of devices with alloys of these compounds possessing detecting and lasing capabilities has been an important recent technological development. The high quality polycrystalline thin films of PbSe1−xTex with variable composition (0≤x≤1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. As deposited films were annealed in vacuum at 350 K. The optical, electrical and structural properties of PbSe1−xTex thin films have been examined. The optical constants (absorption coefficient and bandgap) of the films were determined by absorbance measurements in the wavelength range 2500-5000 nm using Fourier transform infrared spectrophotometer. The dc conductivity and activation energy of the films were measured in the temperature range 300-380 K. The X-ray diffraction patterns were used to determine the sample quality, crystal structure and lattice parameter of the films.  相似文献   

5.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

6.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

7.
(Ga1−xMnx)N thin films grown on GaN buffer layers by using molecular beam epitaxy were investigated with the goal of producing diluted magnetic semiconductors (DMSs) with band-edge exciton transitions for applications in optomagnetic devices. The magnetization curve as a function of the magnetic field at 5 K indicated that ferromagnetism existed in the (Ga1−xMnx)N thin films, and the magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature of the (Ga1−xMnx)N thin film was above room temperature. Photoluminescence and photoluminescence excitation spectra showed that band-edge exciton transitions in (Ga1−xMnx)N thin films appeared. These results indicate that the (Ga1−xMnx)N DMSs with a magnetic single phase hold promise for potential applications in spin optoelectronic devices in the blue region of the spectrum.  相似文献   

8.
Injection of spin-polarized current into spintronic devices is a challenge to the semiconductor physicists and technologists. II-VI compound semiconductors can act as the spin aligner on the top of GaAs light emitting diode. However, II-VI compound semiconductor like Cd1−xMnxTe is still suffering from contacting problem. Application of electroless deposited magnetic NiP:Mn contact would enhance efficient current injection into Cd1−xMnxTe than the standard gold contact. A technique for electroless deposition of NiP:Mn on Cd1−xMnxTe have been described here. The electronic and magnetic properties of the contact material NiP:Mn and the contact performance of NiP:Mn relative to evaporated gold have been evaluated. The contact fulfills the requirements of resistivity and ferromagnetism for application to Cd1−xMnxTe.  相似文献   

9.
Si1−xMnx diluted magnetic semiconductor (DMS) bulks were formed by using an implantation and annealing method. Energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), and double-crystal rocking X-ray diffraction (DCRXD) measurements showed that the grown materials were Si1−xMnx crystalline bulks. Hall effect measurements showed that annealed Si1−xMnx bulks were p-type semiconductors. The magnetization curve as a function of the magnetic field clearly showed that the ferromagnetism in the annealed Si1−xMnx bulks originated from the interaction between interstitial and substitutional Mn+ ions, which was confirmed by the DCRXD measurements. The magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature was approximately 75 K. The present results can help to improve understanding of the formation mechanism of ferromagnetism in Si1−xMnx DMS bulks.  相似文献   

10.
The study of the structural and magnetic phase diagram of the manganites La1−xAgxMnO3 shows similarity with the La1−xSrxMnO3 series, involving a metallic ferromagnetic domain at relatively high temperature (≈300 K). The Ag-system differs from the Sr-one by a much smaller homogeneity range (x≤1/6) and the absence of charge ordering. But the most important feature of the Ag-manganites deals with the exceptionally high magnetoresistance (−25%) at room temperature under 1.2 T, that appears for the composition x=1/6. The latter is interpreted as the coincidence of the optimal double exchange condition (Mn3+:Mn4+=2) with Tmax=300 K (maximum of the ρ(T) curve in zero field).  相似文献   

11.
A series of Ni43Mn46Sn11−xSbx (x=0, 1, and 3) alloys were prepared by an arc melting method. The martensitic transition shifts to higher temperature with the increasing Sb content. The isothermal magnetization curves and Arrott plots around martensitic transition temperatures show a typical metamagnetic behavior. Under a low applied magnetic field of 10 kOe, large magnetic entropy changes around the martensitic transition temperature are 10.4, 8.9, and 7.3 J/kg K, for x=0, 1, and 3, respectively. The origin of the large magnetic entropy changes and potential application for Ni43Mn46Sn11−xSbx alloys as working substances in magnetic refrigeration are discussed.  相似文献   

12.
We have grown MnxGe1−x films (x=0, 0.06, 0.1) on Si (001) substrates by magnetron cosputtering, and have explored the resulting structural, morphological, electrical and magnetic properties. X-ray diffraction results show there is no secondary phase except Ge in the Mn0.06Ge0.94 film while new phase appears in the Mn0.1Ge0.9 film. Nanocrystals are formed in the Mn0.06Ge0.94 film, determined by field-emission scanning electron microscopy. Hall measurement indicates that the Mn0.06Ge0.94 film is p-type semiconductor and hole carrier concentration is 6.07×1019 cm−3 while the MnxGe1−x films with x=0 has n-type carriers. The field dependence of magnetization was measured using alternating gradient magnetometer, and it has been indicated that the Mn0.06Ge0.94 film is ferromagnetic at room temperature.  相似文献   

13.
Optical absorption at room temperature and electrical conductivity at temperatures between 283 and 333 K of vacuum evaporated GexFexSe100−2x (0≤x≤15) amorphous thin films have been studied as a function of composition and film thickness. It was found that the optical absorption is due to indirect transition and the energy gap increases with increasing both Ge and Fe content; on the other hand, the width of the band tail exhibits the opposite behavior. The optical band gap Eopt was found to be almost thickness independent. The electrical conductivity show two types of conduction, at higher temperature the conduction is due to extended states, while the conduction at low temperature is due to variable range hopping in the localized states near Fermi level. Increasing Ge and Fe contents were found to decrease the localized state density N(EF), electrical conductivity and increase the activation energy for conduction, which is nearly thickness independent. Variation of the atomic densities ρ, molar volume V, glass transition temperature Tg cohesive energy C.E and number of constraints NCo with average coordination number Z was investigated. The relationship between the optical gap and chemical composition is discussed in terms of the cohesive energy C.E, average heat of atomization and coordination numbers.  相似文献   

14.
The effect of electron-beam irradiation on the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates by using molecular beam epitaxy was investigated. The ferromagnetic transition temperature (Tc) of the annealed (Ga0.933Mn0.067)As thin films was 160 K. The Tc value for the as-grown (Ga0.933Mn0.067)As thin films drastically decreased with increasing electron-beam current. This significant decrease in the Tc value due to electron-beam irradiation originated from the transformation of Mn substituted atoms, which contributed to the ferromagnetism, into Mn interstitials or Mn-related clusters. These results indicate that the magnetic properties of (Ga1−xMnx)As thin films grown on GaAs (100) substrates are significantly affected by electron-beam irradiation.  相似文献   

15.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions.  相似文献   

16.
Mn3TeO6 exhibits a corundum-related A3TeO6 structure and a complex magnetic structure involving two magnetic orbits for the Mn atoms [Ivanov et al., 2011 [3]]. Mn3−xCdxTeO6 (x=0, 1, 1.5, and 2) ceramics were synthesized by solid state reaction and investigated using X-ray powder diffraction, electron microscopy, and calorimetric and magnetic measurements. Cd2+ replaces Mn2+ cations without greatly affecting the structure of the compound. The Mn and Cd cations were found to be randomly distributed over the A-site. Magnetization measurements indicated that the samples order antiferromagnetically at low temperature with a transition temperature that decreases with increasing Cd doping. The nuclear and magnetic structure of one specially prepared 114Cd containing sample: Mn1.5114Cd1.5TeO6, was studied using neutron powder diffraction over the temperature range 2-295 K. Mn1.5114Cd1.5TeO6 was found to order in an incommensurate helical magnetic structure, very similar to that of Mn3TeO6 [Ivanov et al., 2011 [3]]. However, with a lower transition temperature and the extension of the ordered structure confined to order 240(10) Å.  相似文献   

17.
The magnetism and transport properties of the samples LaMn1−xTixO3 (0≤x≤0.2) were investigated. All samples show a rhombohedral structure () at room temperature. The sample with x=0 undergoes the paramagnetic-ferromagnetic (PM-FM) transition accompanied by an insulator-metal (I-M) transition due to the oxygen excess. The doped samples show ferromagnetism and cluster behavior at low temperatures. Though no I-M transition associated with the PM-FM transition appears, the magnetoresistance (MR) effect was observed especially at low temperatures under the applied fields of 0.5 T. Due to the fact that the oxygen content in the Ti-doped samples is nearly stochiometry (3.01) and the Hall resistivity at room temperature is negative, the ferromagnetism in LaMn1−xTixO3 (0.05≤x≤0.2) is believed to be consistent with the Mn2+-O-Mn3+ double exchange (DE) mechanism. These results suggest that DE can be obtained by direct Mn-site doping.  相似文献   

18.
(Ga1−xMnx)N/GaN digital ferromagnetic heterostructures (DFHs) and (Ga1−xMnx)N/GaN grown on GaN buffer layers by using molecular beam epitaxy have been investigated. The photoluminescence (PL) spectra showed band-edge exciton transitions. They also showed peaks corresponding to the neutral donor-bound exciton and the exciton transitions between the conduction band and the Mn acceptor, indicative of the Mn atoms acting as substitution. The magnetization curves as functions of the magnetic field at 5 K indicated that the saturation magnetic moment in the (Ga1−xMnx)N/GaN DFHs decreased with increasing Mn mole fraction and that the saturation magnetic moment and the coercive field in the (Ga1−xMnx)N/GaN DFHs were much larger than those in (Ga1−xMnx)N thin films. These results indicate that the (Ga1−xMnx)N/GaN DFHs hold promise for potential applications in spintronic devices.  相似文献   

19.
Cd1−xMnxTe thin films were fabricated by thermal interdiffusion of multilayers of sputtered compound semiconductors as well as thermally evaporated elements. Electron microscopy revealed their nanostructures. The alloys have been investigated for evaluation of optical and electronic parameters. Spectrophotometry helped to find out the bandgap and composition; photoluminescence was used for observing relative transition probabilities at room temperature. Photoresponse showed the light dependence of the resistance of the alloy films. Hall measurements and four-probe tests indicated the influence of manganese on the room-temperature electronic properties of the alloy.  相似文献   

20.
The optical properties and the deep levels in bulk Si1−xMnx formed by using an implantation and annealing method were investigated. Transmission electron microscopy, X-ray diffraction, and Hall-effect measurements showed that the annealed bulk Si1−xMnx samples were p-type crystalline semiconductors. The photoluminescence spectra for the annealed bulk Si1−xMnx material showed luminescence peaks corresponding to excitons bound to neutral acceptors and related to dislocations due to the existence of Mn impurities. Deep-level transient spectroscopy results for the annealed bulk Si1−xMnx showed deep levels related to the interstitial and substitutial sites of the Mn+ ions. These results can help improve understanding of the optical properties and the deep levels in annealed bulk Si1−xMnx material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号