首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 129 毫秒
1.
We propose a model describing the destruction of metals under ultrashort intense laser pulses when heated electrons affect the lattice through the direct electron-phonon interaction. The metal consists of hot electrons and a cool lattice. The lattice deformation is estimated immediately after the laser pulse up to the electron temperature relaxation time. The hot electrons are described with help of the Boltzmann and heat conduction equations. We use an equation of motion for the lattice displacements with the electron force included. Estimates of the lattice deformation show that the ablation regime can be achieved. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 3, 195–199 (10 August 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

2.
The electrons and phonons in metal films after ultra-short pulse laser heating are in highly non-equilibrium states not only between the electrons and the phonons but also within the electrons. An electrohydrodynamics model consisting of the balance equations of electron density, energy density of electrons, and energy density of phonons is derived from the coupled non-equilibrium electron and phonon Boltzmann transport equations to study the nonlinear thermal transport by considering the electron density fluctuation and the transient electric current in metal films, after ultra-short pulse laser heating. The temperature evolution is calculated by the coupled electron and phonon Boltzmann transport equations, the electrohydrodynamics model derived in this work, and the two-temperature model. Different laser pulse durations, film thicknesses, and laser fluences are considered. We find that the two-temperature model overestimates the electron temperature at the front surface of the film and underestimates the damage threshold when the nonlinear thermal transport of electrons is important. The electrohydrodynamics model proposed in this work could be a more accurate prediction tool to study the non-equilibrium electron and phonon transport process than the two-temperature model and it is much easier to be solved than the Boltzmann transport equations.  相似文献   

3.
We consider the one-dimensional t - J model, which consists of electrons with spin S on a lattice with nearest neighbor hopping t constrained by the excluded multiple occupancy of the lattice sites and spin-exchange J between neighboring sites. The model is integrable at the supersymmetric point, J = t. Without spoiling the integrability we introduce an Anderson-like impurity of spin S (degenerate Anderson model in the limit), which interacts with the correlated conduction states of the host. The lattice model is defined by the scattering matrices via the Quantum Inverse Scattering Method. We discuss the general form of the interaction Hamiltonian between the impurity and the itinerant electrons on the lattice and explicitly construct it in the continuum limit. The discrete Bethe ansatz equations diagonalizing the host with impurity are derived, and the thermodynamic Bethe ansatz equations are obtained using the string hypothesis for arbitrary band filling as a function of temperature and external magnetic field. The properties of the impurity depend on one coupling parameter related to the Kondo exchange coupling. The impurity can localize up to one itinerant electron and has in general mixed valent properties. Groundstate properties of the impurity, such as the energy, valence, magnetic susceptibility and the specific heat coefficient, are discussed. In the integer valent limit the model reduces to a Coqblin-Schrieffer impurity. Received: 31 December 1997 / Accepted: 17 March 1998  相似文献   

4.
陈安民  高勋  姜远飞  丁大军  刘航  金明星 《物理学报》2010,59(10):7198-7202
研究了超短超强激光脉冲与薄膜靶相互作用中产生的电子热发射.当超短激光脉冲与薄膜靶相互作用时,首先入射超短脉冲激光对吸收深度内的自由电子进行热激发,接下来热激发电子将能量传递到附近的晶格,再通过电子和晶格二体系的热传导,以及电子晶格间的热耦合,将能量传递到材料的内部.因此,电子在皮秒级甚至更短的时间内不能与晶格进行能量耦合,使电子温度超出晶格温度很多,电子热发射就变得非常明显了.用双温方程联合Richardson-Dushman方程的方法对飞秒脉冲激光照射金属靶的电子热发射进行了研究,结果发现电子热发射对飞  相似文献   

5.
This paper numerically simulates the process of ablation of an aluminum target by an intense femtosecond laser with a fluence of 40 J/cm 2 based on the two-temperature equation,and obtains the evolution of the free electron temperature and lattice temperature over a large temporal and depth range,for the first time. By investigating the temporal evolution curves of the free electron temperature and lattice temperature at three representative depths of 0,100 nm and 500 nm,it reveals different characteristics and mechanisms of the free electron temperature evolution at different depths. The results show that,in the intense femtosecond laser ablation of aluminum,the material ablation is mainly induced by the thermal conduction of free electrons,instead of the direct absorption of the laser energy; in addition,the thermal conduction of free electrons and the coupling effect between electrons and lattice will induce the temperature of free electrons deep inside the target to experience a process from increase to decrease and finally to increase again.  相似文献   

6.
The nonlinear emission of electrons from a metal under the action of a femtosecond moderate-intensity laser pulse (laser shot) has been studied. A theoretical model of the process has been constructed based on the 1D nonstationary Schrödinger equation in the vacuum half-space with given boundary conditions for the electron wavefunction. This equation has been solved using the Laplace transformation. It has been assumed that the states of free electrons in a metal, which are described by the Sommerfeld theory of metals, are insignificantly influenced by the laser field. The energy spectrum of emitted electrons has been obtained, and its dependence on the parameters of the lased shot has been found. The calculated spectrum of nonlinear electron emission from a tungsten nanotip under the action of a 6.5-fs-long laser shot generating a field of 9.26 V/nm agrees with the experimental data.  相似文献   

7.
We present a theoretical model of the “isostructural" - phase transition in Ce which is based on quadrupolar interactions due to coupled charge density fluctuations of 4f electrons and of conduction electrons. The latter are treated in tight-binding approximation. The - transition is described as an orientational ordering of quadrupolar electronic densities in a structure. The quadrupolar order of the conduction electron densities is complementary to the quadrupolar order of 4f electron densities. The inclusion of conduction electrons leads to an increase of the lattice contraction at the - transition in comparison to the sole effect of 4f electrons. We calculate the Bragg scattering law and suggest synchrotron radiation experiments in order to check the structure. Received 21 September 1999 and Received in final form 2 May 2000  相似文献   

8.
9.
In this theoretical work a 0-D model for a self-sustained X-ray preionized XeCl-laser discharge is presented. The model is self-consistent in the sense that it simultaneously solves, contrarily to the usual decoupling procedure, the Boltzmann equation for electrons, the kinetic equations for excited and ionic species, the equations for the electrical circuit and the laser photon density. It includes a rather complete kinetics of HCl(v) vibrational excitation, dissociation and dissociative attachment. The influence of electron collisions with excited species and of e-e Coulomb collisions on the plasma parameters and transport coefficients is discussed. Some evidence of the non-stationary equilibrium between the electron distribution and the reduced electric field E/N is given. Results of the model are compared with experimental ones corresponding to a XeCl-laser discharge driven by a L-C inversion circuit. The model predicts well the main trends for the variation of the laser energy in a large range of experimental conditions. The discrepancy between experiment and model for absolute values of the laser energy is discussed.  相似文献   

10.
We considered the propagation of laser monochromatic radiation in a superlattice that contains regions with an elevated concentration of carriers. The model of the energy spectrum of electrons is chosen in the strong coupling approximation. The electromagnetic field is described quasiclassically with Maxwell equations, which, as applied to the problem under study, are reduced to a non-one-dimensional sine-Gordon wave equation for the vector-potential. We analyzed the wave equation in the approximation of slowly varying amplitudes and phases and obtained and numerically solved an effective equation that describes the electromagnetic field in the superlattice. We studied different regimes of propagation of laser radiation, analyzed diffraction by regions with an elevated electron concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号