首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Letter, we employ finite element method to study a periodic initial value problem for the coupled Schrödinger-KdV equations. For the case of one dimension, this problem is reduced to a system of ordinary differential equations by using a semi-discrete scheme. The conservation properties of this scheme, the existence and uniqueness of the discrete solutions, and error estimates are presented. In numerical experiments, the resulting system of ordinary differential equations are solved by Runge-Kutta method at each time level. The superior accuracy of this scheme is shown by comparing the numerical solutions with the exact solutions.  相似文献   

2.
A Galerkin scheme is presented for a class of conservative nonlinear dispersive equations, such as the Camassa–Holm equation and the regularized long wave equation. The scheme has two advantageous features: first, it is conservative in that it keeps the discrete analogue of the continuous energy conservation property in the original equations; second, it can be formulated only with cheap H1H1-elements even if the original equations include third derivative uxxxuxxx. Numerical experiments confirm the stability and effectiveness of the proposed scheme.  相似文献   

3.
An explicit finite volume model to simulate two-dimensional shallow water flow with multi-component transport is presented. The governing system of coupled conservation laws demands numerical techniques to avoid unrealistic values of the transported scalars that cannot be avoided by decreasing the size of the time step. The presence of non conservative products such as bed slope and friction terms, and other source terms like diffusion and reaction, can make necessary the reduction of the time step given by the Courant number. A suitable flux difference redistribution that prevents instability and ensures conservation at all times is used to deal with the non-conservative terms and becomes necessary in cases of transient boundaries over dry bed. The resulting method belongs to the category of well-balanced Roe schemes and is able to handle steady cases with flow in motion. Test cases with exact solution, including transient boundaries, bed slope, friction, and reaction terms are used to validate the numerical scheme. Laboratory experiments are used to validate the techniques when dealing with complex systems as the κ–?κ? model. The results of the proposed numerical schemes are compared with the ones obtained when using uncoupled formulations.  相似文献   

4.
The level set approach represents surfaces implicitly, and advects them by evolving a level set function, which is numerically defined on an Eulerian grid. Here we present an approach that augments the level set function values by gradient information, and evolves both quantities in a fully coupled fashion. This maintains the coherence between function values and derivatives, while exploiting the extra information carried by the derivatives. The method is of comparable quality to WENO schemes, but with optimally local stencils (performing updates in time by using information from only a single adjacent grid cell). In addition, structures smaller than the grid size can be located and tracked, and the extra derivative information can be employed to obtain simple and accurate approximations to the curvature. We analyze the accuracy and the stability of the new scheme, and perform benchmark tests.  相似文献   

5.
We present a high order kinetic flux-vector splitting (KFVS) scheme for the numerical solution of a conservative interface-capturing five-equation model of compressible two-fluid flows. This model was initially introduced by Wackers and Koren (2004) [21]. The flow equations are the bulk equations, combined with mass and energy equations for one of the two fluids. The latter equation contains a source term in order to account for the energy exchange. We numerically investigate both one- and two-dimensional flow models. The proposed numerical scheme is based on the direct splitting of macroscopic flux functions of the system of equations. In two space dimensions the scheme is derived in a usual dimensionally split manner. The second order accuracy of the scheme is achieved by using MUSCL-type initial reconstruction and Runge–Kutta time stepping method. For validation, the results of our scheme are compared with those from the high resolution central scheme of Nessyahu and Tadmor [14]. The accuracy, efficiency and simplicity of the KFVS scheme demonstrate its potential for modeling two-phase flows.  相似文献   

6.
This paper presents a finite volume local evolution Galerkin (FVLEG) scheme for solving the hyperbolic conservation laws. The FVLEG scheme is the simplification of the finite volume evolution Galerkin method (FVEG). In FVEG, a necessary step is to compute the dependent variables at cell interfaces at tn + τ (0 < τ ? Δt). The FVLEG scheme is constructed by taking τ → 0 in the evolution operators of FVEG. The FVLEG scheme greatly simplifies the evaluation of the numerical fluxes. It is also well suited with the semi-discrete finite volume method, making the flux evaluation being decoupled with the reconstruction procedure while maintaining the genuine multi-dimensional nature of the FVEG methods. The derivation of the FVLEG scheme is presented in detail. The performance of the proposed scheme is studied by solving several test cases. It is shown that FVLEG scheme can obtain very satisfactory numerical results in terms of accuracy and resolution.  相似文献   

7.
A numerical method is developed for approximating the solution to the Vlasov–Poisson–Fokker–Planck system in two spatial dimensions. The method generalizes the approximation for the system in one dimension given in [S. Wollman, E. Ozizmir, Numerical approximation of the Vlasov–Poisson–Fokker–Planck system in one dimension, J. Comput. Phys. 202 (2005) 602–644]. The numerical procedure is based on a change of variables that puts the convection–diffusion equation into a form so that finite difference methods for parabolic type partial differential equations can be applied. The computational cycle combines a type of deterministic particle method with a periodic interpolation of the solution along particle trajectories onto a fixed grid. computational work is done to demonstrate the accuracy and effectiveness of the approximation method. Parts of the numerical procedure are adapted to run on a parallel computer.  相似文献   

8.
In this paper, we systematically investigate adaptive Runge–Kutta discontinuous Galerkin (RKDG) methods for hyperbolic conservation laws with different indicators which were based on the troubled cell indicators studied by Qiu and Shu [J. Qiu, C.-W. Shu, A comparison of troubled-cell indicators for Runge–Kutta discontinuous Galerkin mehtods using weighted essentially non-osillatory limiters, SIAM J. Sci. Comput. 27 (2005) 995–1013]. The emphasis is on comparison of the performance of adaptive RKDG method using different indicators, with an objective of obtaining efficient and reliable indicators to obtain better performance for adaptive computation to save computational cost. Both h-version and r-version adaptive methods are considered in the paper. The idea is to first identify “troubled cells” by different troubled-cell indicators, namely those cells where limiting might be needed and discontinuities might appear, then adopt an adaptive approach in these cells. A detailed numerical study in one-dimensional case is performed, addressing the issues of efficiency (less CPU cost and more accurate), non-oscillatory property, and resolution of discontinuities.  相似文献   

9.
In this paper, a compact finite difference scheme for the fractional sub-diffusion equations is derived. After a transformation of the original problem, the L1 discretization is applied for the time-fractional part and fourth-order accuracy compact approximation for the second-order space derivative. The unique solvability of the difference solution is discussed. The stability and convergence of the finite difference scheme in maximum norm are proved using the energy method, where a new inner product is introduced for the theoretical analysis. The technique is quite novel and different from previous analytical methods. Finally, a numerical example is provided to show the effectiveness and accuracy of the method.  相似文献   

10.
The projection method is a widely used fractional-step algorithm for solving the incompressible Navier–Stokes equations. Despite numerous improvements to the methodology, however, imposing physical boundary conditions with projection-based fluid solvers remains difficult, and obtaining high-order accuracy may not be possible for some choices of boundary conditions. In this work, we present an unsplit, linearly-implicit discretization of the incompressible Navier–Stokes equations on a staggered grid along with an efficient solution method for the resulting system of linear equations. Since our scheme is not a fractional-step algorithm, it is straightforward to specify general physical boundary conditions accurately; however, this capability comes at the price of having to solve the time-dependent incompressible Stokes equations at each timestep. To solve this linear system efficiently, we employ a Krylov subspace method preconditioned by the projection method. In our implementation, the subdomain solvers required by the projection preconditioner employ the conjugate gradient method with geometric multigrid preconditioning. The accuracy of the scheme is demonstrated for several problems, including forced and unforced analytic test cases and lid-driven cavity flows. These tests consider a variety of physical boundary conditions with Reynolds numbers ranging from 1 to 30000. The effectiveness of the projection preconditioner is compared to an alternative preconditioning strategy based on an approximation to the Schur complement for the time-dependent incompressible Stokes operator. The projection method is found to be a more efficient preconditioner in most cases considered in the present work.  相似文献   

11.
A finite-difference scheme arising from the use of rational approximants to the matrix-exponential term in a three-time level recurrence relation is used for the numerical solution of the improved Boussinesq equation (IBq). The resulting linear scheme, which is analyzed for local truncation error and stability, is tested numerically and conclusions with corresponding results known in the bibliography are derived.  相似文献   

12.
In the paper, we describe a novel kind of multisymplectic method for three-dimensional (3-D) Maxwell’s equations. Splitting the 3-D Maxwell’s equations into three local one-dimensional (LOD) equations, then applying a pair of symplectic Runge–Kutta methods to discretize each resulting LOD equation, it leads to splitting multisymplectic integrators. We say this kind of schemes to be LOD multisymplectic scheme (LOD-MS). The discrete conservation laws, convergence, dispersive relation, dissipation and stability are investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, non-dissipative, and of first order accuracy in time and second order accuracy in space. As a reduction, we also consider the application of LOD-MS to 2-D Maxwell’s equations. Numerical experiments match the theoretical results well. They illustrate that LOD-MS is not only efficient and simple in coding, but also has almost all the nature of multisymplectic integrators.  相似文献   

13.
A particle scheme for scalar conservation laws in one space dimension is presented. Particles representing the solution are moved according to their characteristic velocities. Particle interaction is resolved locally, satisfying exact conservation of area. Shocks stay sharp and propagate at correct speeds, while rarefaction waves are created where appropriate. The method is variation diminishing, entropy decreasing, exactly conservative, and has no numerical dissipation away from shocks. Solutions, including the location of shocks, are approximated with second order accuracy. Source terms can be included. The method is compared to CLAWPACK in various examples, and found to yield a comparable or better accuracy for similar resolutions.  相似文献   

14.
A hybridized scheme for the numerical solution of transient electromagnetic field problems is presented. The scheme combines the Finite Integration Technique (FIT) and the Finite Volume Method (FVM) in order to profit from the computational efficiency of the FIT while taking advantage of the superior dispersive properties of the FVM. The scheme is based on the longitudinal–transverse (LT) splitting of the discrete curl operator. The FIT is employed for discretizing the two-dimensional subproblem while the one-dimensional problem is discretized according to the FVM. The scheme offers benefits for the simulation of multiscale setups, where the size of the computational domain along one preferred direction is electrically much larger than along the others. In such situations, the accumulation of dispersion errors within hundreds of thousands of time steps usually deteriorates the solution accuracy. The hybrid scheme is applied in combination with adaptive mesh refinement, yielding an efficient scheme for multiscale applications.  相似文献   

15.
16.
A fourth-order compact difference discretization scheme with unequal meshsizes in different coordinate directions is employed to solve a three-dimensional (3D) Poisson equation on a cubic domain. Two multgrid methods are developed to solve the resulting sparse linear systems. One is to use the full-coarsening multigrid method with plane Gauss–Seidel relaxation, which uses line Gauss–Seidel relaxation to compute each planewise solution. The other is to construct a partial semi-coarsening multigrid method with the traditional point or plane Gauss–Seidel relaxations. Numerical experiments are conducted to test the computed accuracy of the fourth-order compact difference scheme and the computational efficiency of the multigrid methods with the fourth-order compact difference scheme.  相似文献   

17.
The resolution of a numerical scheme in both physical and Fourier spaces is one of the most important requirements to calculate turbulent flows. A conservative form of the interpolated differential operator (IDO-CF) scheme is a multi-moment Eulerian scheme in which point values and integrated average values are separately defined in one cell. Since the IDO-CF scheme using high-order interpolation functions is constructed with compact stencils, the boundary conditions are able to be treated as easy as the 2nd-order finite difference method (FDM). It is unique that the first-order spatial derivative of the point value is derived from the interpolation function with 4th-order accuracy and the volume averaged value is based on the exact finite volume formulation, so that the IDO-CF scheme has higher spectral resolution than conventional FDMs with 4th-order accuracy. The computational cost to calculate the first-order spatial derivative with non-uniform grid spacing is one-third of the 4th-order FDM. For a large-eddy simulation (LES), we use the coherent structure model (CSM) in which the model coefficient is locally obtained from a turbulent structure extracted from a second invariant of the velocity gradient tensor, and the model coefficient correctly satisfies asymptotic behaviors to walls.  相似文献   

18.
In this study, we present a new and very accurate numerical method to approximate the Fisher’s-type equations. Firstly, the spatial derivative in the proposed equation is approximated by a sixth-order compact finite difference (CFD6) scheme. Secondly, we solve the obtained system of differential equations using a third-order total variation diminishing Runge–Kutta (TVD-RK3) scheme. Numerical examples are given to illustrate the efficiency of the proposed method.  相似文献   

19.
The geodesic motion on a Lie group equipped with a left or right invariant Riemannian metric is governed by the Euler–Arnold equation. This paper investigates conditions on the metric in order for a given subgroup to be totally geodesic. Results on the construction and characterisation of such metrics are given, especially in the special case of easy totally geodesic submanifolds that we introduce. The setting works both in the classical finite dimensional case, and in the category of infinite dimensional Fréchet–Lie groups, in which diffeomorphism groups are included. Using the framework we give new examples of both finite and infinite dimensional totally geodesic subgroups. In particular, based on the cross helicity, we construct right invariant metrics such that a given subgroup of exact volume preserving diffeomorphisms is totally geodesic.  相似文献   

20.
In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on two local Gauss integrations, and compare it with common VMS method which is defined by a low order finite element space LhLh on the same grid as XhXh for the velocity deformation tensor and a stabilization parameter αα. The best algorithmic feature of our method is using two local Gauss integrations to replace projection operator. We theoretically discuss the relationship between our method and common VMS method for the Taylor–Hood elements, and show that the nonlinear system derived from our method by finite element discretization is much smaller than that of common VMS method computationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号