首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
在密度泛函理论(DFT)框架下, 应用改进的基本度量理论(MFMT)表达硬球作用对自由能泛函的贡献, 根据统计力学理论结合加权密度近似(WDA)表达偶极作用对自由能泛函的贡献,得到了方势阱偶极流体在平行板间的密度分布表达式, 计算了偶极流体在两平行板间的密度分布, 并探讨了方势阱深度和宽度对体系密度分布的影响. 此外, 通过体系密度分布, 进一步分析了方势阱宽度和深度以及板间尺度与溶剂化力的关系.  相似文献   

2.
在密度泛函理论(DFT)框架下, 应用改进的基本度量理论(MFMT)表达硬球作用对自由能泛函的贡献, 根据统计力学理论结合加权密度近似(WDA)表达偶极作用对自由能泛函的贡献,得到了方势阱偶极流体在平行板间的密度分布表达式, 计算了偶极流体在两平行板间的密度分布, 并探讨了方势阱深度和宽度对体系密度分布的影响. 此外, 通过体系密度分布, 进一步分析了方势阱宽度和深度以及板间尺度与溶剂化力的关系.  相似文献   

3.
采用巨正则系综 Monte Carlo 方法(GCMC)以及基于扩展基本度量理论和 MBWR 状态方程的密度泛函理论,研究了 77.4 K 时氮气在不同孔径的 MCM-41 分子筛中吸附的密度分布和吸附等温线.提出的平均场权重密度泛函理论,克服了平均场近似预测主体相热力学性质时的偏差,获得的密度分布和吸附等温线与 GCMC 分子模拟结果有着很好的一致性.  相似文献   

4.
胶体悬浮液由1 nm到1μm大小的颗粒悬浮在液体中构成.胶体颗粒之间具有体积排斥相互作用和其他相互作用,体积排斥导致排空效应.当大硬球处于小球构成的胶体中时,大球周围有小球中心不能进入的排空层.在大的硬球相互接近时,其排空层重合,使小球的自由体积增加,从而熵增加,导致大球之间的等效相互作用,这个相互作用称为排空相互作用.本文介绍了胶体排空相互作用的概念和图像,简要介绍了计算硬球排空相互作用的接受比率方法、Wang-Landau方法、密度泛函理论方法等数值方法;以Asakura-Oosawa模型为例,介绍了Derjaguin近似方法.利用这个近似方法,推导了小硬球胶体中一对硬球、硬球和硬墙之间的排空相互作用,以及一对硬球在细棒胶体和薄盘胶体中的排空相互作用的近似公式.  相似文献   

5.
利用基于密度泛函理论框架下的局域密度近似方法对Ne-CH4分子间的相互作用势进行了计算. 发现 当Ne原子和CH4分子之间的距离约为5.8 a.u.时, 计算的势能曲线存在最小值, 对应的势阱深度约为0.053 eV. 计算结果与实验值符合较好.  相似文献   

6.
利用基于密度泛函理论框架下的局域密度近似方法对Ne-CH4分子间的相互作用势进行了计算. 发现: 当Ne原子和CH4分子之间的距离约为5.8 a.u.时, 计算的势能曲线存在最小值, 对应的势阱深度约为0.053 eV. 计算结果与实验值符合较好.  相似文献   

7.
将平均原子模型和密度泛函理论相结合,发展了一个计算高温稠密等离子体中离子之间平均相互作用势的理论模型. 利用平均原子模型考虑了高温稠密物质中电子的激发和密度效应对电子结构的影响,利用动能和交换相关能的局域密度泛函近似计算离子之间的平均相互作用. 基于发展的相互作用势模型,开展了分子动力学模拟,研究了高温稠密Al和Fe等离子体的状态方程.  相似文献   

8.
本文首次报道了溴氯甲烷(CH2BrCl)分子在电子入射能为1200 eV 束缚能时价壳层的电离能谱和最高占有轨道的电子动量分布.实验结果与Hartree-Fock(HF)方法和密度泛函理论(DFT)计算进行了比较,表明大基组的密度泛函理论与实验符合较好.  相似文献   

9.
叶贞成  蔡钧  张书令  刘洪来  胡英 《物理学报》2005,54(9):4044-4052
应用Yethiraj的加权密度近似泛函理论研究平板狭缝中方阱链流体的密度分布,系统的Helm holtz自由能泛函分为理想气体的贡献利剩余贡献两部分,其中剩余贡献部分分别采用刘洪 来等人建立的基于空穴相关函数的方阱链流体状态方程和Gil-Villegas等人提出的统计缔合 流体理论状态方程(SAFT-VR)结合简单加权密度近似计算.考察了不同链长、温度、系统密度 和壁面吸引强度下平板狭缝中方阱链流体的密度分布,并与Monte Carlo(MC)模拟结果进行 了比较.结果表明采用不同的状态方程对密度分布的计算有明显的影响,对于受限于硬壁狭 缝中的方阱链流体,温度和密度比较高时,两种状态方程计算的结果均与MC模拟符合得比较 好,在低温和低密度下效果变差,SAFT-VR方程的计算结果更接近于MC模拟结果.对于受限于 方阱壁狭缝中的方阱链流体,由于系统密度分布的非均匀性加强,采用两种状态方程计算的 结果均与MC模拟结果有一定偏差,寻找更合适的权重函数是进一步改进的关键. 关键词: 密度泛函理论 非均匀流体 密度分布 固液界面 方阱链  相似文献   

10.
基于第一性原理,利用密度泛函理论(DFT)和密度泛函的微扰理论(DFPT),以及广义梯度近似(GGA),研究了过渡金属Cu的晶体结构、能量、电子能带和态密度、声子的能带结构和态密度,以及其在298.15 K下的热容,体积模量,格林艾森参数和体胀系数等热力学函数并与实验值作了对比.通过分析Cu的晶格几何与能量之间的关系,讨论了金属Cu的固-液相变与晶格声子振动能量之间可能的内在联系,首次提出直接得到Cu熔化温度T_m的静力学方法,研究了熔化温度与压强的关系.计算结果与实验值符合较好,明显优于分子动力学模拟的结果.  相似文献   

11.
Three different density functional approaches, namely the Rickayzen, Takamiya-Nakanishi and Rosenfeld approximations, have been employed to study the equilibrium particle density distributions of hard-disc fluids in hard circular cavities. Also, Monte Carlo simulations have been performed to test the theoretical results. The comparison with the simulation data shows that the Rosenfeld approximation, which is based on the fundamental geometrical measures of the particles, is better than the Takamiya-Nakanishi and Rickayzen approximations and yields good agreement with the computer simulation data even for higher densities.  相似文献   

12.
Anna Oleksy 《Molecular physics》2013,111(18):2871-2883
As a first step towards a density functional theory (DFT) of wetting by ionic solutions we examine the density profiles of ions and solvent molecules confined near a charged wall, or between two walls, and the corresponding interfacial properties, including adsorption, surface tension, solvation force and electrostatic properties, within the semi-primitive model (SPM) of solutions made up of hard sphere solvent particles and charged hard spheres. Both monovalent and divalent cations with species-dependent diameters are considered. The density functional includes the best available Rosenfeld hard-sphere functional, as well as mean-field and Coulomb correlation contributions. The simpler mean-field functional is found to be adequate, at least for monovalent ions. The size differences lead to an interesting ‘fine structure’ of the density and charge density profiles. Cohesive interactions between all species are shown to lead to significant changes in the density profiles.  相似文献   

13.
A density functional theory is proposed for nonuniform freely jointed tangential hard sphere polymer melts in which the bonding interaction is treated on the basis of the properties of the Dirac δ-function, thus avoiding the use of the single chain simulation in the theory. The excess free energy is treated by making use of the universality of the free energy density functional and the Verlet-modified (VM) bridge function. To proceed numerically, one of the input parameters, the second-order direct correlation function of a uniform polymer melt is obtained by solving numerically the Polymer-RISM integral equation with the Percus-Yevick (PY) closure. The predictions of the present theory for the site density distribution, the partition coefficient and the adsorption isotherm, near a hard wall or between two hard walls are compared with computer simulation results and with those of previous theories. Comparison indicates that the present approach is more accurate than the previous integral equation theory and the most accurate Monte Carlo density functional theories. The predicted oscillations of the medium-induced force between two hard walls immersed in polymer melts are consistent with the experimental results available in the literature. Received 18 April 2000  相似文献   

14.
A fluid of hard spheres confined between two hard walls and in equilibrium with a bulk hard-sphere fluid is studied using a second-order Percus-Yevick approximation. We refer to this approximation as second-order because the correlations that are calculated depend upon the position of two hard spheres in the confined fluid. However, because the correlation functions depend upon the positions of four particles (two hard spheres and two walls treated as giant hard spheres), this is the most demanding application of the second-order theory that has been attempted. When the two walls are far apart, this calculation reduces to our earlier second-order approximation calculations of the properties of hard spheres near a single hard wall. Our earlier calculations showed this approach to be accurate for the single-wall case. In this work we calculate the density profiles and the pressure of the hard-sphere fluid on the walls. We find, by comparison with grand canonical Monte Carlo results, that the second-order approximation is very accurate, even when the two walls have a small separation. We compare with a singlet approximation (in the sense that correlation functions that depend on the position of only one hard sphere are considered). The singlet approach is fairly satisfactory when the two walls are far apart but becomes unsatisfactory when the two walls have a small separation. We also examine a simple theory of the pressure of the confined hard spheres, based on the usual Percus-Yevick theory of hard-sphere mixtures. Given the simplicity of the latter approach the results of this simple (and explicit) theory are surprisingly good.  相似文献   

15.
In present work, using density functional theory and extended restricted orientation model, the one particle density of hard Gaussian overlap fluid near the colloid walls is calculated. The hard needle–wall interaction between molecules and colloids are considered. Using non-linear equation, proposed by Grimson–Rickyazen, the solvation force of hard ellipsoidal molecular fluid with hard Gaussian overlap interaction is calculated. We could not find the exact or simulation results for comparison. The results in the case k = 2.0 are compared with the solvation force of one-dimensional hard rod fluids. The results are corresponded, qualitatively.  相似文献   

16.
M. Moradi  S. Hashemi 《Physica A》2010,389(21):4510-2467
The structural and thermodynamic properties of a confined hard ellipse fluid are studied using Monte Carlo simulation. The angular, average number densities and order parameters of hard ellipses confined between hard parallel walls are obtained for various bulk densities, aspect ratios and wall separations. The results show that the effect of the existence of the wall on the molecular fluid structure, either on their directions or their locations, with respect to the bulk, especially close to the walls, is significant. For this system the pressure is also obtained and it is shown that the average density at the wall is proportional to the pressure, βP=〈ρw〉. Our simulation results show that the order parameters depend on the number of the particles in the box unless it exceeds thousand.  相似文献   

17.
P. Ballone  G. Pastore  M.P. Tosi 《Physica A》1984,128(3):631-642
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.  相似文献   

18.
One recently proposed self-consistent hard sphere bridge functional was combined with an exponential function exp(-cr) and a re-normalized indirect correlation function to construct the bridge function for fluid with hard core and interaction tail. In the present approach, the adjustable parameter α was determined by the thermodynamic consistency realized on the compressibility modulus, the re-normalization of the indirect correlation function was realized by a modified Mayer function with the interaction potential replaced by the perturbative part of the interaction potential. As an example, the present bridge function was combined with the Ornstein-Zernike (OZ) equation to predict structure and thermodynamics properties in very good agreement with the simulation data available for Lennard-Jones (L J). Based on the universality principle of the free energy density functional and the test particle trick, the numerical solution of the OZ equation was employed to construct the first order direct correlation function of the non-uniform fluid as a functional of the density distribution by means of the indirect correlation function. In the framework of the density functional theory, the numerically obtained functional predicted the density distribution of LJ fluid confined in two planar hard walls that is in good agreement with the simulation data.  相似文献   

19.
Extensive simulations of a hard sphere fluid confined between two planar hard walls show the onset of crystalline layers at the walls at about 98.3% of bulk crystallization density rho(f) independent of the wall separations L(z), and is, hence, a single wall phenomenon. As the bulk density far from the wall rho(b) increases, the thickness of the crystalline film appears to increase logarithmically, with (rho(f)-rho(b)) indicating complete wetting by the hard sphere crystal of the wall-fluid interface. Increasing rho(b) further, we observe a jump in the adsorption which depends on L(z) and corresponds to capillary freezing. The formation of crystalline layers below bulk crystallization, the logarithmic growth of the crystalline film, its independence of L(z), and its clear distinction from capillary freezing lend strong evidence for complete wetting by the hard sphere crystal at the wall-fluid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号