首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
In this study, the aim is to optimise the acoustical efficiency of T-shaped noise barriers whose top is covered with a series of wells. This research work uses an optimisation method in order to find the best noise barrier profile considering several variable parameters. Numerical simulations of the acoustical propagation are achieved by use of a 2D boundary element method code. The optimisation part is carried out with a global and direct evolutionary optimisation method: a genetic algorithm. The parameters to optimise are the shape of the protection (the depths of the wells on the crowning) and the flow resistivity of absorbing materials considered. The cost function to maximize is defined through a mean value of the acoustical efficiency of the protection compared to a reference configuration, averaged on several receiver points. Final results show significant optimised values of parameters for efficient protections in order to improve classical noise barriers.  相似文献   

2.
Road barrier diffracting caps have shown a renewed interest for several years since they give the opportunity of increasing the barrier efficiency without changing its overall height. First investigations on the efficiency of road barrier caps calculated with a boundary element method (BEM) have shown that the efficiency obtained with coherent line sources is underestimated compared to that with incoherent line sources, more representative of road traffic noise. The present work deals with the characterisation of the real performance of a T-shaped absorbing cap with road traffic noise conditions. Two different approaches are compared: on one hand calculations with the help of a BEM program able to achieve 2D and 2D simulations are made; on the other hand outdoor measurements on a test-wall using a maximum length sequence technique are carried out. The goal in the two approaches is to isolate the top edge diffracted sound field in order to determine an extrinsic value of octave band efficiency of the cap for many source-receiver pairs. These results integrated in a ray tracing prediction method enable the integration of air absorption along each ray path and give the real efficiency of such a device in the case of complex and realistic configurations for barriers of finite length.  相似文献   

3.
Outdoor sound propagation from road traffic is modelled by solving a boundary integral equation formulation of the wave equation using boundary element techniques in two dimensions. In the first model, the source representing a traffic stream can be considered as a coherent line source of sound. The results can then be transformed to derive a pseudo-three dimensional solution to the problem. In the second model the line source is incoherent. For receivers near the ground, the second model predicted significantly higher values of ground attenuation than the first. The first model generally produced better agreement with ground attenuation results obtained using the U.K. traffic noise prediction model. For conditions when a noise barrier was present and the ground was absorbent, the incoherent line source model generally predicted significantly higher values of attenuation than those from the barrier and ground attenuation calculated separately. Over a range of receiver positions and barrier heights a similar, but less marked effect was observed when the coherent line source model was used. On dual carriageway roads, it is possible to incorporate barriers on the central reservation as a noise control measure. These are “median” noise barriers. The incoherent line source model is used to assess the performance of median barriers in reducing noise when installed alone and also with associated roadside barriers. A sound absorbent median noise barrier 1m in height produced consistent values of insertion loss of between 1 and 2dB over the range of receiver positions and ground conditions considered. When the median barrier was used in conjunction with a roadside barrier it produced a consistent improvement in insertion loss of between 1 and 2 dB over the range of conditions considered.  相似文献   

4.
The paper describes an investigation about the acoustic performance of noise barriers with quadratic residue diffuser (QRD) tops, and with T-, Arrow-, Cylindrical and Y-shape profiles. A 2D boundary element method (BEM) is used to calculate the barrier insertion loss. The results of rigid and with absorptive coverage are also calculated for comparisons. Using QRD on the top surface of almost all barrier models presented here is found to improve the efficiency of barriers compare with using absorptive coverage at the examined receiver positions. T-shape and Arrow-shape barriers are also found to provide better performance than other shapes of barriers. The best shape of barriers for utilising QRD among the tested models is the T-shape profile barrier. It is found that reducing the design frequency of QRD shifts the performance improvement towards lower frequency, and therefore the most efficient model for traffic noise is a barrier covered with a QRD tuned to around 400 Hz.  相似文献   

5.
A previous paper [Applied Acoustics 66 (2005) 709-730] has shown that adding a quadratic residue diffuser (QRD) to the top of a T-shape barrier can provide better barrier performance than an equivalent purely absorptive barrier. In here, we extend the study to look at the performance when a QRD is made absorptive. This paper presents an investigation on the acoustic performance of a few welled-diffusers with different absorption ability on top of a T-shape noise barrier. The absorption properties of the diffusers are modified with different sequences, by filling the wells with fiberglass, by covering the well entrance with wire meshes, and by putting perforated sheet either on the top surface or inside the wells. A 2D Boundary Element Method (BEM) is used to calculate the barrier insertion loss. The numerical and experimental results on diffuser barriers with rigid and absorptive covers are compared. Among the tested models the best method of treating diffuser barriers with absorbent agents in the QRD is found to be a perorated sheet on top or inside the diffuser wells. It is found that increasing the absorption ability of QRD by fiberglass or high resistance wire meshes has negative effect on the efficiency of a QRD barrier. It is shown that, if the increase in absorption destroys the effect of resonance in wells, it will also have negative effect on the insertion loss performance of the QRD edge barrier.  相似文献   

6.
The focus of this paper is on the problem of finite impedances on both ground and barrier. Using a boundary element approach the surface treatment of the barrier and finite parts of the ground have been optimised to yield maximum insertion loss at multiple frequencies simultaneously. A 1 m high T-shaped barrier optimised in this way gives up to 8 dB higher insertion loss than a rigid barrier of equal shape. Optimisation of the acoustical properties of the ground below the source as well as those of the barrier improves the insertion loss dramatically for all receiver heights. The ground close to the source is the part of the ground that influences the insertion loss most, and in such a way that the radiation properties of the source are altered, and the radiated sound power is reduced. Having an optimised admittance only on the ground close to the barrier gives only a minor effect. A barrier-ground combination with specialised treatment on the ground close to the source and on the barrier top gives an increase in insertion loss that is comparable to the optimised results. The main conclusion of this paper is that specialised surface treatments provide largest effect if they are used on the ground surface.  相似文献   

7.
Although a considerable amount of research has been undertaken regarding the performance of T-profile noise barriers, the information available to the practicing highway engineer is confusing. For example, there is a widespread belief that the performance of a top edge, expressed as an insertion loss relative to that of the simple barrier on which it is mounted, is constant, irrespective of the relative locations of the source, barrier and receiver. In order to clarify the situation an investigation has been undertaken, using computer modelling, of the performance afforded by highway noise barriers with T-profile tops with different acoustic treatments. The relative insertion loss was found to increase systematically with increasing top width. Although the relative insertion loss afforded by a reflective T-top is small, significant attenuation can be obtained with an absorptive top. Examination of the effect on performance of the locations of source and receiver relative to that of the noise barrier indicated that, for source and receiver locations typical of those experienced for highway noise barriers, the relative insertion loss for a given width of T-top was a function of (a) the path difference between sound travelling to the receiver via the barrier top and direct sound from the source to the receiver and (b) the barrier height. Plots of relative insertion loss versus the path difference, normalised with respect to barrier heights, for a range of T-top widths and absorbent treatment, resulted in a collapse of data around well defined trend lines which offer the potential of being developed into a prediction method.  相似文献   

8.
The boundary element method (BEM) is a commonly used method to compute the insertion loss of noise barriers having arbitrary cross-sections. For large scale three-dimensional problems, however, the BEM is not feasible. On the other hand, standardized calculation methods for noise mapping are efficient, but shapes other than the straight barrier cannot be properly calculated. Attempts to merge these two approaches by using BEM to derive correction functions based on geometrical quantities such as source and target angle as well as the path length elongation between source and receiver caused by the barrier were usually focused on a small set of barrier types, dimensions, absorptive configurations, source or receiver positions. The main objective of this study is to investigate which functions based on the most common geometrical parameters are well suited for approximating the efficiency of different types of barriers, dimensions and absorptive configurations. To achieve this, numerous combinations of 7 different barrier types, different heights and widths as well as 3 different absorptive configurations were simulated using the 2D BEM for 8 different source positions. The octave-band-wise efficiency, i.e. the frequency-dependent gain in insertion loss compared to an equally high, fully reflective straight barrier was used as a basis for the correction functions. Linear as well as polynomial models were compared yielding a polynomial of third degree in the source and fourth degree in the target angle as the best model. Effects on the error using uniform sampling in the target angle instead of a uniform receiver grid as a basis for the correction functions are also investigated. Furthermore, wide-band efficiencies based on standardized traffic emission spectra are calculated showing small errors compared to single-band errors, in particular in the high-frequency range. A linear interpolation scheme is suggested to deal with barriers having dimensions not simulated in this work.  相似文献   

9.
郭文成  叶璇 《应用声学》2020,39(6):901-906
为了改善平行声屏障的性能,本文基于有限元仿真的方法对其陷波模态和插入损失进行了研究。其中,陷波模态是平行声屏障的固有性质,与其几何参数有关。当陷波模态处于共振频率时,平行声屏障内部声场的声能量达到峰值,同时声波垂直入射到声屏障的顶端,使声影区的衍射声能也达到峰值,最终导致插入损失显著下降。本文还对3种优化平行声屏障插入损失的方法进行了分析。结果表明,楔形和扩散型声屏障可降低声波的多次反射效应对插入损失的影响,但是对陷波模态的改善较小。而吸声型声屏障有效的抑制了陷波模态对插入损失的不利影响,从而改善了平行声屏障的性能。  相似文献   

10.
This paper describes the relative acoustical performances established by scale model testing of a number of relatively novel noise barriers in typical highway situations. The various barriers were thin, wide, T-profiled, cylindrically topped, corrugated, inclined, Y-profiled, arrow-profiled and of the thnadner principle, and some were treated with sound absorptive material. The highway situations involved a single barrier with a protected receiver (i.e., a receiver behind the barrier), a single barrier with a receiver on the opposite side of the highway, and parallel barriers, one on each side of the highway. In the single barrier, protected receiver case, higher noise reduction was found for wide top barriers, especially those of T-profile, and especially T-profile absorptive top barriers with cap widths of 0·6 m (2 ft) or more and of small cap thickness. Absorptive side treatment was effective in reducing a small, but measurable sound increase found when a reflective sided barrier is installed on the opposite side of the highway to receivers, and in reducing the degradation in performance that occurs when there is a barrier on each side of the highway rather than on just one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号