首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
91-91.海洋涡流.160(1990),NO.5,1—47.参 131.91-92.高Tc超导体的Josephson 效应及其结构. 160(1990),No.5,49—87.参28891-93.液晶分子光学中的光波局部场效应.160 (1990),NO.5,89—125.参 150.91-94.量子力学和偏振光学中的拓扑相.160 (1990),NO.6,1—49.参134.91-95.超流氦的非线性声学.160(1990), NO.6,51—95.参89.91-96.强光场中的负离子.160(1990),No. 6,97—140.参86.91-97.电荷超光运动的辐射.160(1990), NO.6,141—161.参15.91-98.等离(子)体的激发平衡:分类.(J.A.M.Van der Mullen).Phys.Reports,191(1990), NO.2/3,…  相似文献   

2.
90-284.半导体表面的扫描隧穿显微镜和扫描隧穿能 谱学研究.(吉村雅满等).表面科学[日], 10(1989),No.9.579-587.参 42. 90-295.X射线晶体学的相位问题.(H.A.Haupt- man)、Phys.Today,42(1989),No.11,24- 29.参8. 90-286.无核武器世界的科学和科学家.(E.P.Ve- liknov Phys。Today 42(1989),No.11. 32-36.参3. 90-287.电磁性与弱力的统一.(P.Laagacker et al). Phys.Today,42(1989),No.12,22-31.参 17. 90-288.G.Uhlenbeck与电子自旋的发现.(A. Pais).Phys.Today,42(1989),No.12.34- 40.参24. 90-289.湍流:对理论和实验的挑战.(U…  相似文献   

3.
88-355.金属表面的碱金属作用的分子吸附.(H.P. Bonzel).Surface Sci.Reports,8(1988),No.2,43- 125.参 172.88-356.聚乙炔中的孤[立] 子.(S.Roth et al.). Adv.phys.,36(1987),No.4,385-462.参147.88-357.固体内聚能理论.(G.P.Srivastava et al.). Adv.Phys.,36(1987),No.4,463—517.参约130.88-358.晶体的无公度性.(T.Janssen et al.).Adv Phys,36(1987),No.5,519—624.参约180.88-359.沉积岩的微几何形态和输运性质.(A.H. Thompson et al.). Adv.Phys,36(1987),No.5, 625—694.参约110.88-360.无序介质中的扩散.(S.Havlin et…  相似文献   

4.
37-176,原子和离子的电子碰撞激发中的畸变波方 法.(Y.Itikawa).Phys.Reprots,!43(1986),No. 2,69-108.参 141. 87-177.自然是超对称的吗?(H.E,Hober et al.). Sci Amer.,254(1986),No.6,42-50.参4. 87-178.杂(exotic)原子核.(J.H.Hamilton et 、 al).Sci.AmeR,255(1986),No.1, 74-83.参 4.87-179.准晶体.(K,R.Nelson).Sci.Amer. 255(1986),No.2,32-41.参 4. 87-180.激光聚变的进展(R.S.Craxton et al.) Sci.Amer,255(1986),No.2,60-71.参4. 87-181.多维空间物理学和总星系的起源.(V.M. Emel'yanov.et al).Phys.Reports,143…  相似文献   

5.
[1]K. Chahara, T. Ohono, M. Kasai, Y. Kanke, and Y. Kozono, Appl. Phys. Lett. 63 (1993) 1990. [2]R. von Helmolt, J. Wecker, B. Holzapfel, L. Shultz, and K. Samwer, Phys. Rev. Lett. 71 (1993) 2331. [3]Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A.Asamitsu, G. Kido, and N. Furukawa, J. Phys. Soc. Jpn.63 (1994) 3931. [4]S. Jin, T.H. Tiefel, M. NcCormack, R.A. Fastnacht, R.Ramesh, and L.H. Chen, Science 264 (1994) 413. [5]G.C. Xiong, Q. Li, L. Ju, S.N. Mao, L. Senapati, X.X.Xi, R.L. Greene, and T. Venkatesan, Appl. Phys. Lett.66 (1995) 1427. [6]C. Zener, Phys. Rev. 82 (1951) 403. [7]P.W. Anderson and H. Hasegawa, Phys. Rev. 100 (1955)675. [8]P.G. de Gennes, Phys. Rev. 118 (1960) 141. [9]E.O. Wollen and W.C. Koehler, Phys. Rev. 100 (1955)545. [10]P.E. Schiffer, et al., Phys. Rev. Lett. 75 (1995) 3336. [11]A.P. Ramirez, et al., Phys. Rev. Lett. 76 (1996) 3188. [12]J. Inoue and S. Maekawa, Phys. Rev. Lett. 74 (1995)3407. [13]H. Roder, J. Zang, and A.R. Bishop, Phys. Rev. Lett. 76(1996) 1356. [14]L.J. Zou, X.G. Gong, Q.Q. Zheng, and C.Y. Pan, J. Appl.Phys. 79 (1996) 5162. [15]P.M. Levy and S.F. Zhang, Phys. Rev. Lett. 79 (1997)5110. [16]J. Jiang, J.M. Dong, and D.Y. Xing, Phys. Rev. B55(1997) 8973. [17]D.P. Arovas and F. Guinea, Phys. Rev. B58 (1998) 9150. [18]L.F. Feiner and A.M. Oles, Phys. Rev. B59 (1999) 3295. [19]S. Okamoto, S. Ishihara, and S. Maekawa, Phys. Rev.B61 (2000) 451; ibid. 65 (2002) 144403. [20]W.G. Yin, H.Q. Lin, and C.D. Gong, Phys. Rev. Lett. 87(2001) 047204. [21]E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344(2001) 1. [22]I.V. Solovyev and K. Terakura, Phys. Rev. B63 (2001)174425. [23]J. Wang, Z.D. Wang, W.Y. Zhang, and D.Y. Xing, Phys.Rev. B66 (2002) 064406. [24]H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo,and Y. Tokura, Science 270 (1995) 961. [25]C.H. Chen and S.W. Cheong, Phys. Rev. Lett. 76 (1996)4042. [26]J.B. Goodenough, Phys. Rev. 100 (1955) 564. [27]A.J. Millis, P.B. Littlewood, and B.I. Shrainman, Phys.Rev. Lett. 74 (1995) 5144; A.J. Millis, B.I. Shraiman, and R. Mueller, ibid. 77 (1996) 175. [28]T. Mizokawa and A.Fujimori, Phys. Rev. B56 (1997)493. [29]J.D. Lee and B.I. Min, Phys. Rev. B55 (1997) 14713. [30]S.K. Mishra, R. Pandit, and S. Satpathy, Phys. Rev. B56(1997) 2316. [31]J.F. Shao, G.S. Tian, and T.H. Lin, Commun. Theor.Phys. (Beijing, China) 33 (2000) 329. [32]K.I. Kugel and D.I. Khomskii, JETP Lett. 15 (1972) 446;D.I. Khomskii and K.I. Kugel, Solid Sate Commun. 13(1973) 763. [33]R. Maezono, S. Ishihara, and N. Nagaosa, Phys. Rev.B58 (1998) 11583; R. Maezono and N. Nagaosa, Phys.Rev. B67 (2003) 064413. [34]J. van den Brink, G. Khaliullin, and D. Khomskii, Phys.Rev. Lett. 83 (1999) 5118. [35]G. Jackeli, N.B. Perkins, and N.M. Plakida, Phys. Rev.B62 (2000) 372. [36]Z. Popovic and S. Satpathy, Phys. Rev. Lett. 88 (2002)197201. [37]I.V. Solovyev, Phys. Rev. Lett. 91 (2003) 177201. [38]J. Li, H.Q. Lin, and C.D. Gong, Solid State Commun.115 (2000) 449. [39]D. Poilblanc and T.M. Rice, Phys. Rev. B39 (1989) 9749. [40]A. Himeda and M. Ogata, J. Phys. Chem. Solids 63(2002) 1423.  相似文献   

6.
[1]H.W. Tam, W.X. Ma and X.B. Hu, J. Phys. Soc. Jpn. 69(2000) 45. [2]R. Hirota and J. Satsuma, Phys. Lett. A85 (1981) 407. [3]H.W. Tam, X.B. Hu and D.L. Wang, J. Phys. Soc. Jpn.68 (1999) 369. [4]J. Satsuma and R. Hirota, J. Phys. Soc. Jpn. 51 (1982)332. [5]E.G. Fan and H.Q. Zhang, Phys. Lett. A246 (1998) 403. [6]E.G. Fan, Phys. Lett. A277 (2000) 212. [7]W. Malfiet, Am. J. Phys. 60 (1992) 650. [8]E.J. Parkes and B.R. Duffy, Comput. Phys. Commun. 98(1996) 288. [9]N.F. Smyth, J. Aust. Math. Soc. Series B33 (1992) 403. [10]P.A. Clarkson and E.L. Manfield, Physica D70 (1993)250. [11]N.A. Kudryashov and D. Zargayan, J. Phys. A29 (1996)8067.  相似文献   

7.
Investigation of     
[1]Carl B. Dover, et al., Phys. Rep. 89 (1982) 141. [2]M. Rufa, et al., Phys. Rev. C42 (1990) 2469. [3]Z.Y. Ma, J. Speth, S. Krewald, et al., Nucl. Phys. A608(1996) 305. [4]Y.H. Tan, Y.A. Luo, P.Z. Ning, et al., Chin. Phys. Lett. 18 (2001) 1030. [5]H. Shen and H. Toki, Nucl. Phys. A707 (2002) 469. [6]A.A. Tyapkin, Sov. J. Nucl. Phys. 22 (1976) 89. [7]K. Tsushima and F.C. Khanna, nucl-th/0207036. [8]C.B. Dover and S.H. Kahana, Phys. Rev. Lett. 39 (1977)1506. [9]H. Bando and S. Nagata, Prog. Theor. Phys. 69 (1983)557. [10]H. Bando and M. Bando, Phys. Lett. B109 (1982) 164; B.F. Gibson, et al., Phys. Rev. C27 (1983) 2085. [11]N.I. Starkov and V.A. Tsarev, Nucl. Phys. A450 (1986) 507c. [12]S.A. Bunyatov, V.V. Lyukov, N.I. Starkov, and V.A. Tsarev, Sov. J. Part. Nucl. 23 (1992) 253. [13]Yu. A. Batusov, et al., Preprint of the JINR EI-10069(1976); Sov. J. JETP Lett. 33 (1981) 56. [14]T. Bressani and F. Iazzi, Nuo. Cim. A102 (1989) 597. [15]S.A. Buyatov, V.V. Lyukov, N.I. Strakov, and V.A. Tsarev, Nuo. Cim. A104 (1991) 1361. [16]B.D. Serot and J.D. Walecka, Adv. Nucl. Phys. 16 (1986) 1. [17]P. Ring, Prog. Part. Nucl. Phys. 37 (1996) 193. [18]K. Tsushima, K. Saito, and A.W. Thomas, Phys. Lett.B411 (1997) 9. [19]H. Shen and H. Toki, Phys. Rev. C61 (2000) 045205. [20]Y.H. Tan, H. Shen, and P.Z. Ning, Phys. Rev. C63 (2001)055203. [21]K. Tsushima and F.C. Khanna, nucl-th/0207077. [22]M.M. Sharma, M.A. Nagarajan, and P. Ring, Phys. Lett. B312 (1993) 377. [23]N.K. Glendenning and S.A. Moszkowski, Phys. Rev. Lett. 67 (1991) 2414. [24]J. Schaffner, C. Greiner, and H. Stocker, Phys. Rev. C46 (1992) 322. [25]T. Fukuda, et al., Phys. Rev. C58 (1998) 1306. [26]P. Khaustov, et al., Phys. Rev. C61 (2000) 054603. [27]Y. Yamamoto, et al., Prog. Theor. Phys. Suppl. 117 (1994) 361. [28]S. Ajimura, et al., Nucl. Phys. A585 (1995) 173. [29]Q.N. Usmani and A.R. Bodmer, Phys. Rev. C60 (1999) 055215.  相似文献   

8.
[1]N. Yajima and M. Oikawa, Prog. Theor. Phys. 56 (1976)1719. [2]Y.C. Ma, Studies Appl. Math. 59 (1978) 201. [3]Y.C. Ma and L.G. Rederopp, Phys. Fluids 22 (1979) 1572. [4]M. Funakoshi and M. Oikowa, J. Phys. Soc. Jpn. 52(1983) 1982. [5]M. Oikawa, M. Okamura, and M. Funakoshi, J. Phys. Soc.Jpn. 58 (1989) 4416. [6]Derek W.C. Lai and K.W. Chow, J. Phys. Soc. Jpn. 68(1999) 1847. [7]D.H. Wahlquist and F.B. Estabrook, J. Math. Phys. 16(1975) 1. [8]H.C. Morris, J. Math. Phys. 17 (1976) 1870; H.C. Morris,J. Phys. A: Math. Gen. 12 (1979) 261. [9]J.F. Lu, et al., Phys. Lett. A135 (1989) 179; A213 (1996)32; X.Q. Zhao and J.F. Lu, J. Phys. Soc. Jpn. 68 (1999);IL Nuo. Cim. 112 (1999) 1501.  相似文献   

9.
[1]BES Collaboration,Nucl.Phys.B75 (1999) 181;Z.P.Zheng,Int.J.Mod.Phys.A15 (2000) 4723. [2]J.Z.Bai,et al.,Phys.Rev.Lett.81 (1998) 3091. [3]V.A.Novirov,et al.,Phys.Rep.C41 (1978) 1. [4]R.Barbieri,R.Gatto and E.Remiddi,Phys.Lett.B95(1980) 93;Nucl.Phys.B192 (1981) 61. [5]G.T.Bodwin,E.Braaten and G.P.Lepage,Phys.Rev.D46 (1992) R1914. [6]G.T.Bodwin,E.Braaten and G.P.Lepage,Phys.Rev.D51 (1995) 1125. [7]A.Duncan and A.H.Mueller,Phys.Lett.B93 (1980) 119;A.H.Mueller,Phys.Rep.C73 (1981) 237. [8]G.P.Lepage and S.J.Brodsky,Phys.Rev.D22 (1980)2157. [9]J.Bolz,P.Kroll and G.A.Schuler,Phys.Lett.B392(1997) 198;Eur.Phys.J.C2 (1998) 705. [10]X.N.WANG,X.D.XIANG and T.HUANG,Commun.Theor.Phys.(Beijing,China) 5 (1986) 123. [11]V.L.Chernyak and A.R.Zhitnisky,Nucl.Phys.B201(1982) 492. [12]T.HUANG,B.Q.MA and Q.X.SHEN,Phys.Rev.D49(1994) 1490. [13]A.V.Radyushkin and R.T.Ruskov,Phys.Lett.B374(1996) 848. [14]R.Jakob,P.Kroll and M.Raulfs,J.Phys.G22 (1996)45;P.Kroll and M.Raulfs,Phys.Lett.B387 (1996) 848. [15]I.V.Musatov and A.V.Radyushkin,Phys.Rev.D56(1997) 2713. [16]S.J.Brodsky,T.Huang and G.P.Lepage,Particles and Fields 2,eds Z.Capri and A.N.Kamal,(1982) p.143.  相似文献   

10.
[1]M. Wadati, H. Sanuki, and K. Konno, Prog Theor. Phys.53 (1975) 419. [2]V.A. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, Heidelberg (1991). [3]M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scatting, Cambridge University Press, New York (1991). [4]X.B. Hu and W.X. Ma, Phys. Lett. A293 (2002) 161. [5]S.Y. Lou and J.Z. Lu, Phys. A29 (1996) 4209. [6]X.Y. Tang and S.Y. Lou, Chin. Phys. Lett. 20 (2003) 335. [7]M.L. Wang and H.Q. Zhang, Phys. Lett. A252 (1999)291. [8]Peter A. Clarkson and Martin D. Kruskal, J. Math. Phys.30 (1989) 2201. [9]S.Y. Lou, X.Y. Tang, and J. Lin, J. Math. Phys. 41 (2000)8286. [10]Hui-Bin Li and Ke-Lin Wang, J. Phys A: Math Gen. 23(1990) 4097. [11]W. Maltliet, Am. J. Phys. 31 (1992) 329. [12]W.X. Ma, Int. J. Nonlinear Mech. 31 (1996) 329. [13]E.G. Fan, Phys. Lett. A294 (2002) 26. [14]Y.T. Gao and B. Tian, Comput. Math. Appl. 33 (1997)115. [15]Z.Y. Yan and H.Q. Zhang, Phys. Lett. A285 (2001) 355. [16]Y. Chen, B. Li, and H.Q. Zhang, Commun. Theor. Phys.(Beijing, China) 38 (2002) 261. [17]B. Li, Y. Chen, and H.Q. Zhang, J. Phys. A: Math. Gen.35 (2002) 8253. [18]Y. Chen, B. Li, and H.Q. Zhang, Commun. Theor. Phys.(Beijing, China) 40 (2003) 137. [19]E.G. Fan, J. Phys. A: Math. Gen. 36 (2003) 7009. [20]Z.S. Lu and H.Q. Zhang, Phys. Lett. A307 (2003) 269. [21]Z.S. Lu and H.Z. Zhang, Chaos, Solitons and Fractals 17(2003) 669. [22]S.Y. Lou, Math. Method in Applied Sci. 18 (1995) 789. [23]L.J.F. Broer, Appl. Sci. Res. 31 (1975) 377. [24]D.J. Benney and J.C. Luck, J. Math. Phys. 43 (1964)309. [25]D.J. Kaup, Prog. Theor. Phys. 54 (1975) 396. [26]T.Y. Wu and J.E. Zhang, On Modeling Nonlinear Long Wave, PA: SIAM, Philadelphia (1996) p. 233. [27]M. Boiti, J.J.P. Leon, and F. Pempinelli, Inverse Problems 3 (1987) 1025. [28]G. Paquin and P. Winternitz, Physica D46 (1990) 122. [29]S.Y. Lou, J. Phys. A27 (1994) 3235. [30]S.Y. Lou, Phys. Lett. A176 (1993) 96. [31]M.L. Wang, Y.B. Zhou, and Z.B. Li, Phys. Lett. A216(1996) 67. [32]B. Tian and Y.T. Gao, J. Phys. A29 (1996) 2895.  相似文献   

11.
系统研究了核磁共振碳谱和化学位移规律及其定量构谱关系(QSSR).本文研究了一组十元素分子路径指数矢量VPM,并发现它与烷烃化学位移和CCS有良好线性相关性.采用多元线性回归进行准确估计与预测,结果优良.  相似文献   

12.
A parameter-free, nonperturbative calculation of the ΔNγ electromagnetic transition amplitudes GM*(q2), GE*(q2), and the resonant multipole ratio REM(q2)≡E1+3/2(q2)/M1+3/2(q2) is performed in terms of the well-known nucleon isovector Sachs form factor GMV. Our methods are fully relativistic with conservation of the electromagnetic current guaranteed. We find that GM*(q2) decreases more rapidly than the nucleon dipole form factor when −q21 GeV2/c2 and that REM(q2) remains small even for very high four-momentum transfer implying that the perturbative QCD prediction REM(q2)→1 is purely asymptotic and is valid only for extremely high |q2|.  相似文献   

13.
《Physica A》1995,220(3-4):585-598
An antiferromagnetic equivalent-neighbour Heisenberg interaction Hi between impurity spins is added to the reduced s-d Hamiltonian Hr previously introduced by simplifying the Kondo s-d exchange Hamiltonian HK. Asymptotic mean-field theory is developed for Hr + Hi, in the presence and absence of external magnetic field, and applied to (La1−xCex)Al2 alloys. Specific heat ci(T) and zero-field susceptibility χi(0,T) curves for (La1−xCex)Al2 are depicted. The coupling constants of Hr + Hi and conduction bandwidth are adjusted so that Tc temperatures for x = 0.2, 0.1 are equal to the experimental values. ci(T) exhibits a jump at Tc and is decreasing for T < Tc. χi(0,T) has a first order pole at Tc which corresponds to the maximum of experimental susceptibility and χi(0,0) > 0. These results improve those obtained earlier on the grounds of Hr theory.  相似文献   

14.
We study the nonresonant three-body decays of B+D(*)−sK+π+ and BdDs(*)−K0π+. We find that these decays can provide the information on the time-like form factors of D(*)sK. We also explicitly investigate BdDs(*)−K*+ decays by discriminating the nonresonant contributions with the unknown D(*)s wave functions being fixed by the measured mode of BdDsK+.  相似文献   

15.
吴祖懿 《波谱学杂志》1986,3(2):147-157
本文提出了予测稠苯芳杂环及其烷基链上质子化学位移的计算方法。 将稠苯芳杂环化合物用凯库勒式表示,计算式为为需考虑的苯环内的乙烯基效应。σmi,ci为各苯环的环流效应。σ1,Hc为各芳杂环的屏蔽效应,对杂环上质子它就是该单独芳杂环上相应质子的δ值,对苯环上质子要将它分解为各结构因素的效应,即:σ1,He=(1/2)d-1δx=y(或σz)+σc-c·σm,H. σx-yσz为杂原子或其基团的屏蔽效应,σc=c为存在于芳杂环中的乙烯基的效应,σm,Hc为芳杂环的环流效应,d为对不同质子所考虑的键数。有取代基时需考虑取代基的效应。计算环上烷基质子的公式为:δ=σp,CH3+ασc,CH3+βσt,CH3+σl,G σl,G为稠苯芳杂环基的某级效应。  相似文献   

16.
The specific retention volumes, , for adsorption of 21 solute probes on the solid surface of cellulose acetate butyrate (CAB) were determined in the temperature range 343.15 to 403.15 K by inverse gas chromatography (IGC). The weight fraction activity coefficients, , and Flory–Huggins interaction parameters, , were evaluated using . Both and values decreased with increase of temperature in all the solutes. Further, the values increased with increase of chain length in n-alkanes, but in the case of alcohols the trend was reversed. values were less than 0.5 in polar solutes and greater than 0.5 in 1-alkanes and alcohols. The Hansen solubility parameters (HSP) were calculated by relating with the cohesive energy of adsorption of the solutes on the surface of CAB. The adsorption model proposed by Snyder and Karger was used to determine the HSP for the CAB. The dispersive, , polar, , and hydrogen bonding components of HSP decreased with increase of temperature and the relative error associated with these parameters increased with increase of temperature. The characterization of the solid surface of CAB in terms of the three solubility parameter components was analyzed and is discussed.  相似文献   

17.
张典承  张颍  李晓康  贾凤东  李若虹  钟志萍 《物理学报》2018,67(18):183102-183102
本文在多通道量子亏损理论框架下,利用相对论多通道理论,计算了铥原子收敛于4f132F7/2o)6s(7/2,1/2)4o和4f132F7/2o)6s(7/2,1/2)3o的三个偶宇称里德伯系列.通过将计算结果与美国国家标准与技术研究院数据进行比较,展示了两种类型的电子关联效应:1)里德伯系列之间的相互作用,导致里德伯系列的能级出现整体偏移;2)一个孤立的干扰态镶嵌在一个里德伯系列中,破坏了该里德伯系列能级的规则性.  相似文献   

18.
We review the construction of the multiparametric quantum group ISOq,r(N) as a projection from SOq,r (N + 2) and show that it is a bicovariant bimodule over SOq,r(N). The universal enveloping algebra Uq,r(iso(N)), characterized as the Hopf algebra of regular functionals on ISOq,r(N), is found as a Hopf subalgebra of Uq,r(so(N + 2)) and is shown to be a bicovariant bimodule over Uq,r(so(N)).

An R-matrix formulation of Uq,r(iso(N)) is given and we prove the pairing Uq,r(iso(N)) — ISOq,r(N)). We analyze the subspaces of Uq,r(iso(N)) that define bicovariant differential calculi on ISOq,r(N).  相似文献   


19.
The effects of an electric field on the interband transitions in InxGa1−xAs/InyAl1−yAs coupled step quantum wells have been investigated both experimentally and theoretically. A InxGa1−xAs/InyAl1−yAs coupled step quantum well sample consisted of the two sets of a 50 Å In0.53Ga0.47As shallow quantum well and a 50 Å In0.65Ga0.35As deep step quantum well bounded by two thick In0.52Al0.48As barriers separated by a 30 Å In0.52Al0.48As embedded potential barrier. The Stark shift of the interband transition energy in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that InxGa1−xAs/InyAl1−yAs coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers.  相似文献   

20.
Abstract

Among simple ?-graded Lie superalgebras of polynomial growth, there are several which have no Cartan matrix but, nevertheless, have a quadratic even Casimir element C 2: these are the Lie superalgebra of vector fields on the (1|6)-dimensional supercircle preserving the contact form, and the series: the finite dimensional Lie superalgebra of special Hamiltonian fields in 2k odd indeterminates, and the Kac–Moody version of . Using C 2 we compute N. Shapovalov determinant for and , and for the Poisson superalgebras associated with . A. Shapovalov described irreducible finite dimensional representations of and ; we generalize his result for Verma modules: give criteria for irreducibility of the Verma modules over and   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号