首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
Raman spectra and XPS studies of phase changes in Ge2Sb2Te5 films   总被引:1,自引:0,他引:1       下载免费PDF全文
刘波  宋志棠  张挺  封松林  Chen Bomy 《中国物理》2004,13(11):1947-1950
Ge_2Sb_2Te_5 film was deposited by RF magnetron sputtering on Si (100) substrate. The structure of amorphous and crystalline Ge_2Sb_2Te_5 thin films was investigated using XRD, Raman spectra and XPS. XRD measurements revealed the existence of two different crystalline phases, which has a FCC structure and a hexagonal structure, respectively. The broad peak in the Raman spectra of amorphous Ge_2Sb_2Te_5 film is due to the amorphous -Te--Te- stretching. As the annealing temperature increases, the broad peak separates into two peaks, which indicates that the heteropolar bond in GeTe_4 and the Sb-Sb bond are connected with four Te atoms, and other units such as (TeSb) Sb-Sb (Te_2) and (Sb_2) Sb-Sb (Te_2), where some of the four Te atoms in the above formula are replaced by Sb atoms, remain in crystalline Ge_2Sb_2Te_5 thin film. And from the results of Raman spectra and XPS, higher the annealing temperature, more Te atoms bond to Ge atoms and more Sb atoms substitute Te in (Te_2) Sb-Sb (Te_2).  相似文献   

2.
It is well known that the optical property of an optical thin film can be influenced by even small inho- mogeneity of refractive index (RI). In order to investigate the RI inhomogeneity of LaF3 single layer in deep ultraviolet (DUV) range, single-layer LaF3 samples deposited on fused silica and CaF2 substrates are prepared by resistive heating evaporation at different deposition temperatures. The reflectance and transmittance spectra of LaF3 film samples are measured with a spectrophotometer, and used to calculate the RI inhomogeneity. The experimental results show that no RI inhomogeneity of LaF3 film is observed when deposited on CaF2 substrate, while negative RI inhomogeneity is presented when deposited on fused silica substrate. The level of inhomogeneity is affected by the substrate temperature, which decreases with the increasing substrate temperature from 250 to 400 ℃.  相似文献   

3.
黄征  武莉莉  黎兵  郝霞  贺剑雄  冯良桓  李卫  张静全  蔡亚平 《中国物理 B》2010,19(12):127204-127204
In order to fabricate AlSb polycrystalline thin films without post annealing,this paper studies a technology of magnetron co-sputtering onto intentionally heated substrate.It compares the structural characteristics and electrical properties of AlSb films which are deposited at different substrate temperatures.It finds that the films prepared at a substrate temperature of 450 C exhibit an enhanced grain growth with an average grain size of 21 nm and the lattice constant is 0.61562 nm that goes well with unstained lattice constant(0.61355 nm).The ln(σ dark) ~ 1/T curves show that the conductivity activation energy is about 0.38 eV when the film is deposited at 450 C without an annealing.The transmittance and reflectance spectra show that the film deposited at 450 C has an optical band gap of 1.6 eV.These results indicate that we have prepared AlSb polycrystalline films which do not need a post annealing.  相似文献   

4.
Single crystalline silicon films are transferred on to a glass substrate by the smart-cut technique,which is based on H^ ions implantation,anodic bonding and layer transfer,Structures of the resulting thin film silicon on galss(SOG) are characterized by transmission-electron microscopy,scanning electron microscopy and Raman spectroscopy.The results show that SOG substrates fabricated by the smart-cut have advantages of steep top Si/glass interface and good monocrystalline Si quality.The Hall-effect measurement indicates that the single crystalline SOG substrates have a better electrical property compared with polycrystalline silicon SOG substrates.  相似文献   

5.
We report an above-band-gap radiative transition in the photoluminescence spectra of single crystalline Ge in the temperature range of 20-296 K. The temperature-independence of the peak position at -0.74 eV is remarkably different from the behavior of direct and indirect gap transitions in Ge. This transition is observed in n-type, p-type, and intrinsic single crystal Ge alike, and its intensity decreases with the increase of temperature with a small activation energy of 56 meV. Some aspects of the transition are analogous to III-V semiconductors with dilute nitrogen doping, which suggests that the origin could be related to an isoelectronic defect.  相似文献   

6.
A simple method for synthesis of well dispersed cadmium sulphide nanoparticles embedded in a polyethylene glycol matrix (PEG 400) in thin film form is presented. The large blue shift of the band gap energy of the CdS nanoparticles compared to the bulk semiconductors is observed via UV-vis absorption spectra. Photoluminescence spectra of CdS nanocomposite films show that the emission peaks shift towards the longer wavelength with the increase of annealing temperature. Transmission electron microscopic images as well as Raman scattering studies confirm the CdS nanometer size particle formation within the polymer matrix. The particle size is about 8 nm. Selected area electron diffraction (SAED) shows the cubic zinc blende polycrystalline rings. Third-order optical nonlinearity of the CdS nanopartieles embedded in polymer thin films is studied with the Z-scan technique under 1064 nm excitation. The results show that the CdS nanocomposite film exhibits negative nonlinear refraction index and positive absorption coefficient. The film shows large optical nonlinearity, and the magnitude of the third-order nonlinear susceptibility of the film is calculated to be 1.73 × 10^-9 esu. The corresponding mechanism is discussed.  相似文献   

7.
In this study, Ge_(1-x)Sn_x alloy films are co-sputtered on Si(100) substrates using RF magnetron sputtering at different substrate temperatures. Scanning electron micrographs, atomic force microscopy(AFM), Raman spectroscopy, and x-ray photoemission spectroscopy(XPS) are conducted to investigate the effect of substrate temperature on the structural and optical properties of grown Ge Sn alloy films. AFM results show that RMS surface roughness of the films increases from 1.02 to 2.30 nm when raising the substrate temperature. This increase could be due to Sn surface segregation that occurs when raising the substrate temperature. Raman spectra exhibits the lowest FWHM value and highest phonon intensity for a film sputtered at 140?C. The spectra show that decreasing the deposition temperature to 140?C improves the crystalline quality of the alloy films and increases nanocrystalline phase formation. The results of Raman spectra and XPS confirm Ge–Sn bond formation. The optoelectronic characteristics of fabricated metal-semiconductor-metal photodetectors on sputtered samples at room temperature(RT) and 140?C are studied in the dark and under illumination. The sample sputtered at 140?C performs better than the RT sputtered sample.  相似文献   

8.
We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AIN buffer layer. Improved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6 H—SiC substrates by metal organic chemical vapor deposition.Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer,we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.  相似文献   

9.
Theoretical and experimental investigations on the dependence of the intensity of infrared (IR) absorption of poly- crystalline cubic boron nitride thin films under the residual compressive stress conditions have been performed. Our results indicate that the intensity of the IR absorption is proportional to the total degree of freedom of all the ions in the ordered regions. The reduction of interstitial Ar atom concentration, which causes the increase in the ordered regions of cubic boron nitride (cBN) crystallites, could be one cause for the increase in the intensity of IR absorption after residual compressive stress relaxation. Theoretical derivation is in good agreement with the experimental results concerning the IR absorption intensity and the Ar interstitial atom concentration in cubic boron nitride films measured by energy dispersion X-ray spec- troscopy. Our results also suggest that the interstitial Ar is the origin of residual compressive stress accumulation in plasma enhanced cBN film deposition.  相似文献   

10.
Cadmium sulphide (CdS) and cadmium telluride (CdTe) thin films are deposited by electron beam evaporation. Atomic force microscopy (AFM) reveals that the root mean square (RMS) roughness values of the CdS films increase as substrate temperature increases. The optical band gap values of CdS films increase slightly with the increase in the substrate temperature, in a range of 2.42-2.48 eV. The result of Hall effect measurement suggests that the carrier concentration decreases as the substrate temperature increases, making the resistivity of the CdS films increase. CdTe films annealed at 300 ℃ show that their lowest transmittances are due to their largest packing densities. The electrical characteristics of CdS/CdTe thin film solar cells are investigated in dark conditions and under illumination. Typical rectifying and photovoltaic properties are obtained.  相似文献   

11.
Two kinds of cadmium sulfate (CdS) thin films have been grown at 600 °C onto Si(111) and quartz substrates using femtosecond pulsed laser deposition (PLD). The influence of substrates on the structural and optical properties of the CdS thin films grown by femtosecond pulsed laser deposition have been studied. The CdS thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), photoluminescence (PL) and Raman spectroscopy. Although CdS thin films deposited both on Si(111) and quartz substrates were polycrystalline and hexagonal as shown by the XRD , SEM and AFM results, the crystalline quality and optical properties were found to be different. The size of the grains for the CdS thin film grown on Si(111) substrate were observed to be larger than that of the CdS thin film grown on quartz substrate, and there is more microcrystalline perpendicularity of c-axis for the film deposited on the quartz substrate than that for the films deposited on the Si substrate. In addition, in the PL spectra, the excitonic peak is more intense and resolved for CdS film deposited on quartz than that for the CdS film deposited on Si(111) substrate. The LO and TO Raman peaks in the CdS films grown on Si(111) substrate and quartz substrate are different, which is due to higher stress and bigger grain size in the CdS film grown on Si(111) substrate, than that of the CdS film grown on the amorphous quartz substrate. All this suggests that the substrates have a significant effect on the structural and optical properties of thin CdS films. PACS 81.15.Fg; 81.05.Ea; 78.20.-e; 78.67.-n; 42.62.-b  相似文献   

12.
钟文武  刘发民  蔡鲁刚  丁芃  柳学全  李一 《物理学报》2011,60(11):118102-118102
采用水热合成法在预先生长的ZnO种子层的玻璃衬底上制备出Al和Sb共掺ZnO纳米棒有序阵列薄膜. 通过X射线衍射、扫描电镜、透射电镜和选区电子衍射分析表明:所制备的薄膜由垂直于ZnO种子层的纳米棒组成, 呈单晶六角纤锌矿ZnO结构, 且沿[001]方向择优生长, 纳米棒的平均直径和长度分别为27.8 nm和1.02 μm. Al和Sb共掺ZnO纳米棒有序阵列薄膜的拉曼散射分析表明:相对于未掺杂ZnO薄膜的拉曼振动峰(580 cm-1), Al和Sb共掺ZnO阵列薄膜的E1(LO)振动模式存在拉曼位移. 当Al和Sb的掺杂量为3.0at%,4.0at%,5.0at%,6.0at%时, Al和Sb共掺ZnO阵列薄膜的拉曼振动峰的位移量分别为3,10,14,12 cm-1. E1 (LO) 振动模式位移是由Al和Sb掺杂ZnO产生的缺陷引起的. 室温光致发光结果表明:掺杂Al和Sb后, ZnO薄膜在545 nm处的发光强度减小,在414 nm处的发光强度增加. 这是由于掺杂Al和Sb后, ZnO薄膜中Zni缺陷增加, Oi缺陷减少引起的. 关键词: Al和Sb共掺ZnO薄膜 纳米棒有序阵列 结构表征 拉曼散射  相似文献   

13.
Raman spectra of InAs quantum dots (QDs) on InP substrate were investigated. Both longitudinal-optic (LO) and transverse-optic (TO) frequency of InAs QDs showed a large blue-shift comparing to its bulk due to the compressive strain in InAs QDs. Raman scattering of InAs QDs with a thin GaAs interlayer was studied. We obtained that the peak position of LO and TO mode of InAs QDs became larger blue-shifted when we inserted the GaAs layer. At the same time, we found a red-shift of the frequency of GaAs LO mode because of tensile strain. Theoretical calculation was performed and its prediction coincided with our experiment results well. They both showed that strain played an important role in formation of InAs QDs.  相似文献   

14.
ZnSe thin films were deposited by pulsed laser ablation on quartz substrate. The films were investigated by different characterization techniques, such as X-ray diffraction, Raman microspectroscopy, absorption, reflectivity, and photoluminescence spectroscopy. The XRD analysis showed the formation of cubic phase polycrystalline films. The Raman spectra confirmed the formation of ZnSe by the presence of TO and LO peaks at 202 cm-1 and 252 cm-1, respectively. The analysis of absorption and reflectivity measurements permits evaluation of the band gap and excitonic energy at low temperature and the temperature dependence of the energy gap. The photoluminescence measurements indicated the possibility of obtaining intrinsic band-band radiative emission up to room temperature. PACS 52.38.Mf; 78.55.-m; 78.55.Et  相似文献   

15.
Transparent conducting polycrystalline Al-doped ZnO (AZO) films were deposited on sapphire substrates at substrate temperatures ranging from 200 to 300 °C by pulsed laser deposition (PLD). X-ray diffraction measurement shows that the crystalline quality of AZO films was improved with increased substrate temperature. The electrical and optical properties of the AZO films have been systematically studied via various experimental tools. The room-temperature micro-photoluminescence (µ-PL) spectra show a strong ultraviolet (UV) excitonic emission and weak deep-level emission, which indicate low structural defects in the films. A Raman shift of about 11 cm−1 is observed for the first-order longitudinal-optical (LO) phonon peak for AZO films when compared to the LO phonon peak of bulk ZnO. The Raman spectra obtained with UV resonant excitation at room temperature show multi-phonon LO modes up to third order. Optical response due to free electrons of the AZO films was characterized in the photon energy range from 0.6 to 6.5 eV by spectroscopic ellipsometry (SE). The free electron response was expressed by a simple Drude model combined with the Cauchy model are reported.  相似文献   

16.
氮化铝结构的高温Raman光谱分析   总被引:2,自引:2,他引:0  
本文测量了氮化铝在不同温度下的Raman光谱 ,并确定了氮化铝的光学声子模E2 1、A1(TO)、E2 2 、E1(TO)、A1(LO)和E1(LO)Raman散射峰的频率 ,它们分别为 2 5 2cm- 1、6 1 4cm- 1、6 5 8cm- 1、6 72cm- 1、894cm- 1和 91 2cm- 1,其中光学声子模A1(TO)、E2 2 的Raman散射峰比较明显。随着温度的升高 ,A1(TO)、E2 2 散射峰的频率向低波数方向变化 ,表明氮化铝粉末压制体中存在的压应力逐渐减小 ;这两个散射峰的半高宽逐渐增大 ,说明随着温度的升高 ,存在氮原子和铝原子的扩散使得氮化铝粉末压制体中晶体结构逐渐发生变化。由于氮化铝粉末本身在空气中易与水蒸气发生反应 ,生成的Al(OH) 3 或AlOOH在加热过程会发生分解 ,干扰样品高温Raman光谱测量。  相似文献   

17.
顾本源 《物理学报》1985,34(2):269-274
本文提出一种简便识别旋光性单轴晶体喇曼光谱中横模和纵模的方法。应用90°散射几何配置x(z+Δy,xz)y,散射光的偏振方向与x轴成δ夹角。应用Loudon给出的单轴晶体极性声子的喇曼散射效率公式,计算TO和LO模的散射效率,它们依赖于喇曼张量元和δ角,其极大值分别位于δmaxTO和δmaxLO处,这两个角度的符号正好相反。因此,由判定δmax的符号,可以将TO和LO模区分开来,并且从|δmax|值可以了解喇曼张量的各向异性。 关键词:  相似文献   

18.
铁电陶瓷材料在外场加载下的畴变所引起的材料结构变化,是导致材料性能衰变和破坏的主要原因,Raman光谱技术是一种研究铁电材料畴变和微结构变化的无损伤性及原位微区的观测方法。采用传统固相法合成Zr/Ti原子比为53/478的掺镧锆钛酸铅(PLZT)铁电陶瓷材料,采用X射线衍射仪和扫描电子显微镜及Precision_LC铁电测试系统分别对试样进行结构形貌表征和铁电物理性能测试,利用自制的应力加载装置与Raman光谱仪联用,实现不同压应力场作用下试样的原位Raman谱测试,考察和分析Raman谱软模E(2TO)和E(3TO+2LO)+B1的峰强和峰位随散射偏振方向的变化规律。结果表明,不同压应力场下Raman软模E(2TO)和E(3TO+2LO)+B1的峰强均随散射偏振角度呈现正弦式的变化规律,在60°偏振角度上软模峰强最大,在150°偏振角度上软模峰强最小。随着压应力场的增加,在0°和60°偏振角度获得的软模峰强随应力场的增加呈现明显的下降趋势,而在90°和150°偏振角度获得的软模峰强基本不变。压应力场变化对PLZT陶瓷的Raman软模E(2TO)和E(3TO+2LO)+B1的峰位均不产生影响。  相似文献   

19.
刘波  阮昊  干福熹 《光学学报》2002,22(10):1266-1270
研究了结晶度对Ag11In12 Te2 6Sb51相变薄膜光学常数的影响。用初始化仪使相变薄膜晶化 ,改变晶化参量得到不同的结晶度 ,当转速固定时 ,随激光功率的增加 ,折射率基本随之减小 ,消光系数先是增大 ,而后减小 ;当激光功率固定时 ,随转速的增大 ,折射率也随之增大 ,消光系数也是先增大后减小。非晶态与晶态间的变换、薄膜微结构的变化 (包括晶型的转变和原子间键合状态的变化 )以及薄膜内残余应力是影响Ag11In12 Te2 6Sb51相变薄膜复数折射率的主要原因。测量了单层膜的透过率和CD RW相变光盘中Ag11In12 Te2 6Sb51薄膜非晶态和晶态的反射率  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号