共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
基于中红外光源的气体光谱检测是新的痕量气体监测与分析方法,在大气监测领域具有重要的应用。构建了一套基于中红外DFG光源的甲烷气体光谱检测系统。该系统以1 550 nm和1 060 nm波段可调谐半导体激光器作为基频光源,采用PPLN晶体作为差频非线性变频器件,实现了3.3 μm处的窄线宽可调谐中红外光源输出。实验结果表明,当PPLN晶体工作温度为99.5℃时,闲频光的输出功率为112 μW,差频转换效率达到1.246 mW/W2。晶体的温度接受带宽为4.3℃,泵浦光波长接受带宽为5.3 nm。在此基础上,分别利用直接吸收法和谐波检测法获得了3 028.751 cm-1处的甲烷气体吸收光谱和二次谐波检测信号。 相似文献
5.
为实现中红外波段的高精度线型研究,建立了一套在2.5~5um波段连续可调谐的中红外差频激光光谱测量系统.基于宽带连续可调谐钛宝石激光器(700 ~900 nm)和单频连续Nd:YAG激光器(1064 nm),利用碘多普勒展宽吸收和频率调制技术,对Nd:YAG激光的频率进行反馈控制,使1064 nm的Nd:YAG激光的波长稳定性好于1X10-5 cm-1由此差频输出的波长稳定性达到1×10-1cm-1水平,适合高精度的线形研究.并通过对CH4分子在2927 cm-1附近吸收谱线的测量,表明该系统可以结合频率调制方法,进行高灵敏的光谱检测. 相似文献
6.
7.
8.
9.
10.
基于中红外光谱吸收技术的一氧化碳气体检测系统 总被引:1,自引:0,他引:1
基于中红外光谱吸收技术,利用一氧化碳(CO)气体分子在4.6 μm处的基频吸收带,采用新脉冲的红外光源和双通道的热释电探测器,研制了一种CO浓度检测系统。该系统主要由脉冲调制式宽带热光源、开放式椭球聚光镜/气室、双通道探测器、主控及信号处理模块构成。通过优化开放式椭球聚光镜/气室,气体吸收光程达到40 cm, 探测器输出电信号的幅度增加约为原来的2~3倍。因此,采用椭球聚光镜后,将在一定程度上提高系统的信噪比从而改善系统的性能指标。利用配备的CO气体样品,研究了该系统对CO气体的传感特性。实验结果显示,该系统的最小检测下限为10 ppm,在该浓度点的测量误差约为14%;在20~25 000 ppm范围内的测量误差小于7.8%;对0 ppm气体样品的连续50分钟测量结果的最大偏差约为3 ppm,标准差约为0.18 ppm。同基于量子级联激光器和分布反馈激光器的CO检测系统相比,该系统具有性价比高、光路结构简单等优势,从而在煤矿、环保等场合下的CO检测方面具有较好应用前景。 相似文献
11.
We present the numerical results for the optimization of the pump-to-idler conversion efficiencies of nanosecond idler wavelength tunable cascaded optical parametric oscillators(OPO) in different wavelength tuning ranges, where the primary signals from the OPO process are recycled to enhance the pump-to-idler conversion efficiencies via the simultaneous difference frequency generation(DFG) process by monolithic aperiodically poled, magnesium oxide doped lithium niobate(APMg LN) crystals. The APMg LN crystals are designed with different chirp parameters for the DFG process to broaden their thermal acceptance bandwidths to different extents. The idler wavelength tuning of the cascaded OPO is realized by changing the temperature of the designed APMg LN crystal and the cascaded oscillation is achieved in a single pump pass singly resonant linear cavity. The pump-to-idler conversion efficiencies with respect to the pump pulse duration and ratio of OPO coefficient to DFG coefficient are calculated by numerically solving the coupled wave equations. The optimal working conditions of the tunable cascaded OPOs pumped by pulses with energies of 350 μJ and 700 μJ are compared to obtain the general rules of optimization. It is concluded that the optimization becomes the interplay between the ratio of OPO coefficient to DFG coefficient and the pump pulse duration when the idler wavelength tuning range and the pump pulse energy are fixed. Besides, higher pump pulse energy is beneficial for reaching higher optimal pump-to-idler conversion efficiency as long as the APMg LN crystal is optimized according to this pump condition. To the best of our knowledge,this is the first numerical analysis of idler wavelength tunable cascaded OPOs based on chirp-assisted APMg LN crystals. 相似文献
12.
针对由YDFL和EDFL作为基频光源的QPM-DFG激光系统,利用PPMgLN晶体的色散关系及其温度特性,有效拓宽了QPM波长接受带宽.模拟结果表明,当采用1550和1060 nm波段的EDFL和YDFL分别作为DFG的信号和抽运光源时,对于相同的中红外波段,满足QPM条件所允许的抽运光波长变化范围远大于信号光波长变化范围.当固定信号光波长为1560 nm时,对于给定的晶体温度,1060 nm波段抽运光的QPM接受带宽超过17 nm,对应于中红外差频光带宽可约180 nm.采用多波长YDFL作为抽运源,单关键词:差频产生准相位匹配多波长中红外光纤激光器 相似文献
13.
A method for frequency-multiplexed multi-sample gas sensing is presented. It enables measuring multiple samples placed simultaneously in the setup, without any optical or mechanical switching. Samples are measured using heterodyne detection and signal from each sensing path is encoded at different carrier frequency. Subsequently, a signal from particular sample is retrieved through heterodyne beatnote demodulation at unique frequency. This technique is particularly suitable for real-time calibration of the sensor through a sequential (or simultaneous) detection of three signals: from unknown sample, reference sample and baseline. Basic setup is demonstrated and proof-of-concept experiments are presented. Very good agreement with spectra measured using standard tunable diode absorption spectroscopy is obtained. 相似文献
14.
The design of the acoustic resonator is critical for the optimization of the sensitivity of laser photoacoustic spectroscopy (LPAS) in trace gas detection applications. In this paper, an LC circuit model is used for the simulation of a 1D acoustic resonator. This acoustic resonator is designed for CO photoacoustic spectroscopy. The effects of the structural parameters, quality factor and resonant frequency on the performance of the device are theoretically analyzed. The role of the buffer volume as an acoustic filter is investigated and optimized dimensions of the buffer volume, to achieve minimum noise transmission coefficient, are calculated. The effects of the ambient temperature, variety of pressure and gas flow velocity on the resonant frequency of photoacoustic resonator and PA signal are simulated. The temperature dependence of the microphone sensitivity is also introduced. 相似文献
15.
Femtosecond optical pulse is used to generate narrow-band terahertz pulses depending on a quasi-phase-matched condition in periodically poled lithium niobate (PPLN) and stoichiometric lithium tantalate (PPSLT) crystals by difference frequency generation. The origin of narrow-band THz generation proved that the two frequency components of the fs pulse contribute to the frequency mixing. By cryogenic cooling, the absorption of THz waves in the crystal is significantly reduced which results in efficient THz generation. Simultaneously generated forward and backward THz pulses were 1.38 and 0.65 THz with as narrow as the bandwidth of 32 GHz in the PPSLT sample. Temperature dependence of the generated THz waveforms had good agreement with the simulation result using one dimensional plane-wave propagation model. 相似文献
16.
We report on the extension of the emission wavelength range of a nanosecond pulsed commercial optical parametric oscillator (OPO) towards the infrared. By difference frequency mixing the idler of the OPO with the fundamental of its Nd:YAG pump laser the wavelength range from 2.5–4.5 μm is covered at considerable pulse energies. This laser source is then applied for the first time to photoacoustic trace gas spectroscopy in the fundamental C---H stretch band located around 3.3 μm. Spectra of single- and multi-component gas mixtures of volatile organic compounds are recorded and analyzed with respect to composition and concentration. The detection limits for the individual substances within the gas mixtures are found in the lower parts per million (ppm) range. 相似文献
17.
光纤型宽带可调连续波差频产生中红外激光器转换效率的研究 总被引:1,自引:0,他引:1
以掺镱光纤激光器为抽运源、掺铒光纤激光器后接掺铒光纤放大器为信号源,利用周期极化掺镁铌酸锂晶体,研究了全光纤化差频产生中红外激光器的转换效率特性。结果表明,抽运光和信号光偏振态影响差频产生过程的转换效率,利用偏振控制器,可将抽运光和信号光偏振方向调节到与晶体光轴方向平行,以获得高的转换效率。抽运光和信号光的光束质量既影响差频产生过程的转换效率,又决定晶体纵向位置的容限,当聚焦系统由自聚焦透镜和焦距100mm平凸透镜组成时,相对转换效率达0.717mW-2,晶体纵向位置容限为44mm。此外,差频光在3126.36~3529.6nm范围内调谐时,转换效率基本保持不变。 相似文献
18.
Jian Wang Junqiang Sun Xinliang Zhang Deming Liu Dexiu Huang 《Optics Communications》2008,281(19):5019-5024
We propose and simulate simple realizations of all-optical format conversion between differential phase-shift keying (DPSK) signals based on cascaded second-order nonlinearities in a periodically poled lithium niobate (PPLN) waveguide. Four kinds of 40 Gb/s all-optical format conversion from non-return-to-zero differential phase-shift keying (NRZ-DPSK) to return-to-zero differential phase-shift keying (RZ-DPSK) are investigated based on cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) or cascaded sum- and difference-frequency generation (cSFG/DFG). The optical spectra, temporal waveforms, eye diagrams, constellation diagrams, and time-related phase distribution are analyzed, which indicate successful implementation of NRZ-DPSK-to-RZ-DPSK format conversion. The obtained results also confirm the phase preservation characteristic of PPLN. 相似文献
19.
本文报道国内建成的远红外激光磁共振 (FIRLMR)光谱仪的技术特点和工作原理。该谱仪采用CO2 激光横向泵浦远红外激光 ,样品吸收池置于远红外激光谐振腔内 ,由聚丙烯薄膜与远红外激光增益池隔开以获得很高的灵敏度 ,从而对寿命很短的自由基分子进行研究。利用该光谱仪在远红外波段测量得到了多个瞬态自由基分子CCH ,CF和CH2 的光谱 ,这些自由基分子由微波放电产生的氟原子与甲烷CH4 反应生成。 相似文献