首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
High power femtosecond pulses in the Vacuum Ultra Violet (VUV) have been generated through the nonlinear interaction of femtosecond KrF pulses with xenon and argon gas. Under near resonant two photon excitation of xenon by a femtosecond KrF laser, parametric four wave mixing processes lead to VUV pulses at 147 and 108 nm with pulse energies in the 10 µJ range. Tuning is demonstrated by mixing the KrF pulse with a 500 fs dye laser pulse at 497 nm, resulting in 165 nm emission. In argon, a three photon resonance leads to third harmonic generation at 83 nm and micro joule level pulses near 127 nm generated by a six wave mixing process. Since the spectra of the VUV pulses show an ionization-induced blue shift with increasing KrF laser intensity, the VUV pulses can be shown to have temporal duration less than the pulse width (450 fs) of the KrF laser. Blue shifting of the third harmonic of the KrF laser in argon is dominated by a reduction in the neutral gas density rather than by an increase in the electron density.  相似文献   

2.
A theory is developed for calculating the charge composition of a cluster plasma produced upon irradiation of large atomic clusters by the field of a superatomic femtosecond laser pulse. The theory is based on the overbarrier process of a successive multiple internal ionization of atomic ions inside a cluster accompanied by the external field ionization. Collision ionization is also taken into account in the calculations. The theory is illustrated by the example of a cluster consisting of 106 xenon atoms irradiated by a 50-fs laser pulse with a peak intensity of 2×1018 W/cm2. In this case, the Xe26+ ions dominate. The amounts of atomic xenon ions with multiplicity up to 31 are calculated.  相似文献   

3.
Interaction between high-power ultrashort laser pulse and giant clusters (microdroplets) consisting of 109 to 1010 atoms is considered. The microdroplet size is comparable to the laser wavelength. A model of the evolution of a microdroplet plasma induced by a high-power laser pulse is developed, and the processes taking place after interaction with the pulse are analyzed. It is shown theoretically that the plasma is superheated: its temperature is approximately equal to the ionization potential of an ion having a typical charge. The microdroplet plasma parameters are independent of the pulse shape and duration. The theoretical conclusions are supported by experimental studies of x-ray spectra conducted at JAERI, where a 100-terawatt Ti-sapphire laser system was used to irradiate krypton and xenon microdroplets by laser pulses with pulse widths of 30 to 500 fs and intensities of 6×1016 to 2×1019W/cm2.  相似文献   

4.
5.
The yields of highly charged atomic ions produced in the exposure of xenon clusters embedded in helium nanodroplets by intense colored double pulses show a notable sensitivity on the order of the subpulses. The only slight difference in their spectral composition leads to a flipping of the optimal laser parameters for effective multielectron ionization above certain charge states, which appears to be quite robust with respect to the chosen pulse fluence and reflects an avalanche-like developing cluster ionization scenario.  相似文献   

6.
冯培培  吴寒  张楠 《物理学报》2015,64(21):214201-214201
本文使用不同激光能流(18 J/cm2–115 J/cm2)和脉冲宽度(50 fs–4 ps)的超短脉冲激光在真空中(4×10-4 Pa)烧蚀高定向热解石墨. 通过测量烧蚀喷射物的时间分辨发射光谱研究喷射物的超快时间演化. 在喷射物发射光谱中, 观察到了C2基团的天鹅带光谱系统, 416 nm附近C15基团的由电子能级1Σu+1Σg+之间的振动跃迁产生的光谱峰以及连续谱. 50 fs, 115 J/cm2的脉冲激光烧蚀产生的喷射物的连续谱的强度衰减分为快速下降和慢速下降两个阶段(以20 ns时间延迟为分界). 这表明连续谱是由两种不同的组分贡献的. 快速下降阶段, 连续谱主要由碳等离子体通过韧致辐射产生; 慢速下降阶段, 连续谱主要由烧蚀后期产生的大颗粒碳簇的热辐射贡献. 实验结果还揭示了激光能流的提高, 会明显增加喷射物中碳等离子体和激发态C2的含量, 但对质量稍大的C15的影响较小; 此外, 50 fs脉冲激光烧蚀产生的连续谱的存在时间会随着激光能流的减小而增大, 这说明低能流更有利于在烧蚀后期产生碳簇. 脉宽主要影响喷射物连续谱的时间演化. 4 ps脉冲激光烧蚀产生的连续谱的整个时间演化过程明显慢于50 fs脉冲产生的连续谱.  相似文献   

7.
In this paper, a two dimensional Particle In Cell‐Monte Carlo Collision simulation scheme is used to examine the THz generation via the interaction of high intensity ultra‐short laser pulses with an underdense molecular hydrogen plasma slab. The influences of plasma density, laser pulse duration and its intensity on the induced plasma current density and the subsequent effects on the generated THz signal characteristics are studied. It is observed that the induced current density in the plasma medium and THz spectral intensity are increased at the higher laser pulse intensities, laser pulse durations and plasma densities. Moreover, the generated THz electric field amplitude is reduced at the higher laser pulse durations. A wider frequency range for the generated THz signal is shown at the lower laser pulse durations and higher plasma densities. Additionally, it is found that the induced current density in hydrogen plasma medium is the dominant factor influencing the generation of THz pulse radiation. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We have studied high-order harmonic generation (HHG) from organic molecules irradiated with near-infrared high intensity laser pulses of 70 fs and 240 fs duration. The molecular systems studied were the aromatics benzene and naphthalene and the alkanes cyclopropane and cyclohexane (cyclic) and n-hexane (linear). Harmonic intensities were measured both as a function of laser intensity (in the range 5×1013-5×1015 W cm-2) and as a function of ellipticity of the laser field polarisation. The results were compared with those from the xenon atom. For 70 fs pulses, harmonic generation from the organic systems was similar to that of xenon, revealing an atom-like behaviour for molecules when the laser pulse duration is shorter than the fragmentation timescale of the molecule. We note significant differences between molecules with respect to HHG efficiencies and the suppression of HHG in larger species. We discuss these differences in the context of the molecular properties, electronic structure and behaviour of ionisation and fragmentation that result in enhancement of field ionisation in larger systems. Study of the polarisation ellipticity dependence of HHG shows that the harmonic yield in molecules is less sensitive to the polarisation than for atoms (xenon). This is consistent with the expected behaviour given the larger recollision cross-section presented by the core in the molecular system compared to the atom. Our results suggest that study of HHG from molecules exposed to ultra-short pulses is potentially a powerful tool for understanding the electron dynamics of molecules exposed to an intense field. Received 14 September 2000 and Received in final form 6 December 2000  相似文献   

9.
We have measured the energy and angular-resolved electron emission from medium-sized silver clusters (N approximately 500-2000) exposed to dual laser pulses of moderate intensity (I approximately (10(13-14) W/cm2). When the second pulse excites the plasmon resonantly, we observe enhanced emission along the laser polarization axis. The asymmetry of the electron spectrum is strongly increasing with electron energy. Semiclassical simulations reveal the following mechanism: Electrons bound in highly excited states can leave, return to, and traverse the cluster. Those electrons that return at zero plasmon deflection and traverse the cluster during a favorable plasmon half-cycle can experience maximum acceleration by the evolving polarization field. As a result of these constraints energetic electrons are emitted in direction of the laser polarization axis in subcycle bursts.  相似文献   

10.
The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.  相似文献   

11.
我们提出利用频率为ω,3ω和强度较弱的2ω组成的三色圆偏振激光组合脉冲驱动氦原子能够得到椭偏率较大的阿秒脉冲链的一种方法.通过强场近似方法,计算了氦原子在两色和三色圆偏振激光组合脉冲驱动下发射高次谐波谱及其合成阿秒脉冲链,比较了氦原子(初态为s态)在这两种情况下发射高次谐波谱的特点及其合成阿秒脉冲链椭偏率的大小,结果发现,在反旋的两色ω,3ω激光脉冲基础上加入了频率为2ω的第三色激光脉冲联合作用到氦原子上,所得到的阿秒脉冲链的椭偏率相对于双圆场情况下有所增加,通过调整ω,3ω激光的强度比,并且选择适当的第三色激光的强度,对初态为s态的原子,仍能够得到具有较大椭偏率的阿秒脉冲链.  相似文献   

12.
《等离子体物理论文集》2017,57(6-7):293-310
In this work, using a two‐dimensional particle‐in‐cell Monte Carlo collision computation method, terahertz (THz) radiation generation via the interaction of two‐colour, ultra‐short, high‐power laser pulses with the polyatomic molecular gases sulphur dioxide (SO2) and ammonia (NH3) is examined. The influence of SO2 and NH3 pressures and two‐colour laser pulse parameters, i.e., pulse shape, pulse duration, and beam waist, on the THz radiation generation is studied. It is shown that the THz signal generation from SO2 and NH3 increases with the background gas pressure. It is seen that the THz emission intensity for both gases at higher laser pulse durations is higher. Moreover, for these polyatomic gases, the plasma current density increases with increase in the laser pulse beam waist. A more powerful THz radiation intensity with a larger time to peak of the plasma current density is observed for SO2 compared to NH3. In addition, many THz signals with small intensities are observed for both polyatomic gases. It is seen that for both SO2 and NH3 the generated THz spectral intensity is higher at higher gas pressures.  相似文献   

13.
氩团簇高信噪比13—23nm软x射线辐射谱实验观察   总被引:1,自引:1,他引:0       下载免费PDF全文
用150fs的掺钛蓝宝石激光系统, 在功率密度约为5×1015 W/cm2时 激励氩(Ar)团簇,利用具有空间分辨能力的平场光栅谱仪观察到13—23nm波段Ar的软x射线谱,并观察到Ar的11阶离子谱线.在较宽的激光脉宽和较低的激光功率密度情况下,通过激励Ar团簇,获得 了Ar的高阶电离度的实验结果,且谱线的信噪比明显好于光场感应电离的情况,说明团簇的 形成大幅度地提高了激光能量的吸收效率. 关键词: Ar团簇 超短强激光 软x射线辐射  相似文献   

14.
New results in the experimental study of the spectro-temporal selection (STS) method to produce picosecond dye laser pulses are presented. Adjustability of the picosecond pulse wavelength, possibility of extension of the STS method to different dyes and to UV pump wavelength, stability of the output pulse duration and intensity, and the concentration effect on pulse duration, are reported for the first time. From these results, production of high power picosecond (50–100 ps) dye laser pulses spectrally adjustable between 400 and 700 nm is obtained with a standard nanosecond pump laser, in a compact and simple device.  相似文献   

15.
We review the studies of the modifications of harmonic spectra from laser-produced plasmas. The substantial spectral broadening and blue shift of the harmonics generating in the laser plasma during transformation of the spectrum of the laser radiation formed the filaments upon passage of femtosecond pulses through the argon gas is analyzed. We also discuss the studies of harmonic spectra variations that occur as a result of the passage of the laser pulses through the carbon- and metal-containing plasmas at the variable density of ablated species and intensity of driving pulse. To show other type of modulation of harmonic emission spectra, the plasmas containing the small molecules of silver produced during ablation of the bulk silver and silver nanoparticles at the conditions suitable for efficient harmonic generation of the ultrashort pulses propagating through the laser-produced plasmas were analyzed. The time-of-flight mass-spectroscopy studies of plasmas confirmed the presence of these species in plasmas.  相似文献   

16.
The goal of this work is to derive the angular distributions of electrons irradiated at the outer ionization of large atomic clusters from Xe atoms by relativistic laser pulses taking into account rescattering processes. Both the magnetic field of the laser pulse and the Coulomb field of the ionized cluster significantly influence the rescattering of ejected electrons. The multiply inner ionization of atoms occurs at the leading edge of the laser pulse. The atomic ions with charge multiplicities up to Z = 26 are subsequently produced (each atomic ion with the next charge multiplicity appears in 3–5 fs) when the laser intensity increases. The measurements of the angular distributions of electrons allow us to reproduce the imaging dynamics of outer ionization of the cluster at the leading edge of the relativistic femtosecond laser pulse.  相似文献   

17.
Luminescence of silver nanoparticles photodeposited on titan dioxide nanoparticles of mesoporous film is studied. Luminescence was registered under the two-photon excitation by femtosecond laser pulses of Ti:sapphire laser. It occurs that Ag/TiO2 mesoporous films have high concentration of bright luminescence spots which reveal stability to degradation under long illumination. Various configurations of silver nanoparticles are analyzed to explain the physics of bright luminescence spots (“hot spots”). Luminescence intensity reveals “hot spots” dependence on excitation laser pulse polarization. Properties of Ag/TiO2 system show its promising usage for single molecule spectroscopy and biological objects visualization.  相似文献   

18.
An experimental investigation was made of the xenon excimer laser. Several laser cavities have been employed with excitation by electron beams of cross section (15×2) cm2 and (55×4) cm2 and current density 100–150 A cm-2 injected transverse to the cavity axis. A numerical model of the xenon laser is compared with experimental results. The laser pulse width was found to be dependent on laser intensity and cavity mirrors. Early termination of the laser pulse was observed consistent with changing reflectivity of the cavity mirrors. An uncoated MgF2 retroreflector produced a laser output of significantly longer pulse width. Quasi-cw laser action was observed.  相似文献   

19.
利用功率密度为1011—1012W·cm-2的1064nm纳秒激光电离氙原子团簇,在飞行时间质谱中观察到电离态高达+20的高价离子.不同脉冲束位置实验表明,仅当激光作用于分子束的中段时,才能观察到高价离子,且高价离子的强度随束源压力的增加而迅速增强.实验结果表明束中大尺寸团簇的存在与高价离子的形成密切相关.讨论了高价离子产生的可能机理. 关键词: 氙 纳秒激光 高价离子 飞行时间质谱  相似文献   

20.
Matveev  V. I.  Kochkin  S. A. 《Technical Physics》2004,49(3):345-351

A method for evaluating the energy spectra and temperature dependences of the yield of neutral and charged clusters that consist of N≥5 atoms and are produced by ion bombardment of metals is proposed. The results are presented in the form of simple formulas. Theoretical energy spectra of clusters emitted as a result of bombarding niobium, tantalum, and iron targets by atomic ions of gold or xenon and temperature dependences of the yield of silver clusters produced by bombarding the targets with xenon ions are compared with experimental data.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号