首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 187 毫秒
1.
采用双水电极介质阻挡放电装置,在空气和氩气的混合气体中,首次研究了由中心亮点和暗点组成的亮暗点超六边形斑图。通过观察斑图照片,可以发现暗点位于周围其他三个亮点的质心处,并且亮点和暗点的亮度有所不同,这说明亮点和暗点的等离子体状态可能不同。利用发射光谱法,研究了亮暗点超六边形斑图中亮点和暗点的等离子体参量随氩气含量的变化趋势。首先通过采集氮分子(N2)第二正带系(C3Πu→B3Πg)发射谱线,计算出了亮点和暗点的分子振动温度; 之后利用氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度之比,得到了此斑图中亮点和暗点的电子平均能量; 最后通过氩原子696.57 nm(2P2→1S5)谱线的展宽,研究了此斑图中亮点和暗点的电子密度。实验结果发现: 在同一氩气含量下,亮暗点超六边形斑图中暗点的分子振动温度、电子平均能量和电子密度均高于亮点的相应等离子体参量; 保持其他实验参数不变,随着氩气含量从70%变化到95%,亮点和暗点的分子振动温度和电子密度均是逐渐增大的,而电子平均能量则是逐渐减小的。亮点和暗点的等离子状态的不同,说明二者的放电机制可能不同。进一步采用高速录像机对斑图进行短曝光拍摄,发现亮点存在沿面放电,这些沿面放电交汇形成暗点。  相似文献   

2.
采用光谱法, 研究了氩气/空气混合气体介质阻挡放电中蜂窝斑图形成过程中等离子体参量的变化。实验发现,随着电压的增加,放电经历六边形点阵斑图及疏密点同心圆环斑图后,形成了蜂窝斑图。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线、氩原子763.26 nm(2P6→1S5)与772.13 nm(2P2→1S3)两条谱线强度比法和氩原子696.57 nm(2P2→1S5)谱线的展宽,分别研究了上述三种斑图的分子振动温度、电子激发温度和电子密度。结果发现:蜂窝斑图的分子振动温度和电子激发温度均高于六边形点阵斑图相应的温度,但其电子密度却比后者的电子密度低。实验还通过电容法,测量了放电斑图的放电功率,发现蜂窝斑图的放电功率远远高于六边形点阵斑图的放电功率。工作结果对于研究介质阻挡放电自组织斑图的形成机制具有重要意义。  相似文献   

3.
在氩气/空气的混合气体近大气压介质阻挡放电中,首次观察到点状与线状放电共存的放电现象, 测量比较了点状与线状放电的谱线频移和振动温度。谱线频移的测量利用的是氩原子ArⅠ(2P2→1S5)的发射谱线,振动温度的测量利用的是氮分子第二正带系(C3Πu→B3Πg) 的发射谱线。结果表明:点放电中的ArⅠ(2P2→1S5)谱线的频移大于线放电谱线的频移,表明前者电子密度较高;而点放电振动温度低于线放电的振动温度。  相似文献   

4.
在介质阻挡放电系统中,空气和氩气混合气体的实验条件下,第一次实现了只具有一个单元结构的白眼斑图。该斑图的结构从中心位置向外依次为:中心点,围绕中心点的环和环外六个点。由于出现该单晶胞白眼斑图时的电压较低,而本实验采用的水电极中的水的比热容大,具有良好的吸热性,这使斑图在放电过程中放电气隙间的气体的温度没有升高,并且放电现象没有发生变化。因此在实验过程中,单晶胞白眼斑图在长时间放电的情况下并没有使其等离子体状态发生改变。由普通照相机所拍摄的图片可以看到,单晶胞白眼斑图的中心点,围绕中心点的环和环外六个点的亮度有明显不同。在不同压强下该斑图的稳定性有所不同,并且中心点,围绕中心点的环和环外六个点的亮度随压强的变化有所不同。鉴于此,本实验采用了发射光谱法,研究了单晶胞白眼斑图中不同位置处(中心点、环及外围六个点)的等离子体温度随压强的变化关系。其中,分子振动温度使用氮分子第二正带系(C3ΠuB3Πg)的发射谱线来计算;电子激发温度利用氩原子763.26 nm(2P6→1S5)与772.13 nm(2P2→1S3)两条谱线强度值进行比较的方法进行研究;电子密度利用氩原子696.57 nm(2P2→1S5)谱线的展宽来测量。发现在同一实验条件下,单晶胞白眼斑图的中心点的电子激发温度、电子密度和分子振动温度均最低,环外六个点相应的电子激发温度、电子密度和分子振动温度次之,环相应的电子激发温度、电子密度和分子振动温度均最高;随着气体压强从40 kPa增大到60 kPa,单晶胞白眼斑图不同位置处的电子密度增高但分子振动温度和电子激发温度均降低。本实验结果有助于进一步研究自组织斑图形成的机制。  相似文献   

5.
在空气与氩气按比例混合组成的气体放电中,研究了由中心点和六边形晕组成的六边形晕斑图。从照片中观察六边形晕斑图结构,发现中心点和六边形晕的亮度有明显的差异,说明中心点和六边形晕可能处的等离子体状态不同。利用发射光谱法,详细研究了该六边形晕斑图结构的中心点和六边形晕的等离子体参数随压强的变化关系。实验根据氮分子第二正带系(C3ΠuB3Πg)谱线计算了中心点和六边形晕的分子振动温度;通过氮分子离子(391.4 nm) 与氮分子(394.1nm)谱线强度比,反映中心点和六边形晕的电子平均能量;利用氩原子696.5 nm(2P2→1S5)谱线的展宽,研究了电子密度。实验结果表明: 六边形晕斑图主要范围是氩气含量从60%~75%、压强从30~46 kPa。在相同的压强条件下,六边形晕比中心点的分子振动温度、电子平均能量均要高。随着压强从30 kPa逐渐升高到46 kPa,中心点和六边形晕的分子振动温度、电子平均能量是逐渐增大的。在相同的压强条件下,六边形晕比中心点的谱线展宽要大,且随着压强的升高而增加,表明电子密度随着压强的增大而升高。六边形晕和中心点的等离子体的状态不同,说明二者放电机制上的差异。进一步采用高速照相机对斑图的电流脉冲进行分脉冲瞬时拍摄,发现中心点是由先放电的体放电形成,而六边形晕是由放电晚于体放电的沿面放电形成。  相似文献   

6.
在空气和氩气的混合气体介质阻挡放电中,得到了白眼斑图,其晶胞是由一个封闭六边形包围一个亮点所组成。观察发现,该斑图单个晶胞上中心点、六边形顶点及六边形边上呈现出三种不同的亮暗状态。该工作利用光谱方法,分别对白眼斑图单个晶胞以上三处的振动温度进行了测量,并研究了它们随氩气含量的变化。振动温度是根据氮分子的第二正带系(C3Πu→B3Πg)的发射谱线计算的。结果表明:白眼斑图中的中心点、六边形的顶点以及六边形边上中点的振动温度依次升高,且均随氩气含量的增加而减小。  相似文献   

7.
利用水电极介质阻挡放电装置,在不同氩气含量的气体放电中,首次观察到了白眼六边形斑图,此斑图的白眼晶胞都是由点、环和晕三层结构组成的, 且其放电稳定性和持续性极好。从照片中可以观察到这三种结构有明显的亮度差异,说明白眼晶胞中点、环和晕可能处于不同的等离子体状态,同时在不同氩气含量下,白眼晶胞的颜色和亮度都有明显的差异,说明白眼晶胞的等离子体状态也有所不同。由于此次研究的白眼六边形斑图是在较低的电压下得到的,使得水电极的温度没有升高且放电现象没有发生变化,因此在实验过程中长时间的放电没有影响该斑图的等离子体状态。为此,本小组采用发射光谱法,研究了此斑图的白眼晶胞中的点、环和晕的两种等离子体参数:分子振动温度和电子密度随氩气含量的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了白眼晶胞中的点、环和晕的分子振动温度;实验采集了Ar Ⅰ(2P2→1S5)的发射谱线,通过白眼晶胞中的点、环和晕的谱线展宽随氩气含量的变化,来反映白眼晶胞的三层结构的电子密度的变化。实验发现:在同一氩气含量条件下,白眼晶胞中点、环和晕的分子振动温度从大到小为:晕、环、点,而电子密度从大到小为:点、环、晕;随着氩气含量从70%增大到90%,点的分子振动温度及电子密度均增加;环的分子振动温度基本保持不变,而其电子密度减小;晕的分子振动温度及电子密度均减小。实验结果说明白眼晶胞中的点、环和晕的等离子体状态不同。本工作结果,对于研究介质阻挡放电中具有多层结构的自组织斑图有重要意义。  相似文献   

8.
氩气含量对介质阻挡放电中单丝等离子体温度的影响   总被引:1,自引:0,他引:1  
在空气与氩气组成的混合气体放电中,首次研究了由中心点和外层晕组成的单丝。从照片中观察单丝结构,发现混合气体中氩气所占的比例越重,单丝的直径随之越小,同时中心点和外层晕的亮度有明显的差异,说明中心点和外层晕可能处于不同的等离子体状态。实验对单丝结构进行了光学时空分辨测量,研究了中心点和外层晕两层结构的微观特性。利用发射光谱法,详细地研究了该单丝结构的中心点和外层晕的等离子体参数随氩气含量的变化关系。实验根据氮分子第二正带系(C3ΠuB3Πg)谱线计算了中心点和外层晕的分子振动温度;通过氮分子离子N+2(391.4 nm) 第一负带系谱线与氮分子N2(394.1nm)谱线强度比,反映中心点和外层晕的电子平均能量随氩气含量的变化关系;利用氩原子763.2 nm(2P6→1S5)和772.077 nm(2P2→1S3)两条谱线的相对强度比法,估算了中心点和外层晕的电子激发温度。结果表明:中心点的光信号对应着第一个电流脉冲, 且其光信号较弱;而外层晕的光信号同时对应着第一个和第二个电流脉冲, 且其光信号较强。在相同的氩气含量条件下,外层晕比中心点的分子振动温度、电子平均能量以及电子激发温度均要高。随着氩气含量从30%逐渐增大到50%,中心点和外层晕的分子振动温度是逐渐减小的,而电子平均能量和电子激发温度均是逐渐增大的。  相似文献   

9.
近大气压条件下,在介质阻挡放电系统中得到了氩气和空气混合气体在300~800 nm范围内的发射光谱,研究了中等pd值(约6.4×103 Pa·cm) 氩气和空气混合气体中电子激发温度与分子振动温度。实验选用两条ArⅠ谱线763.51 nm(2P6→1S5)与772.42 nm(2P2→1S3),用强度对比法测量电子激发温度,利用氮分子第二正带系(C 3ΠuB 3Πg)计算氮分子振动温度。实验结果表明:电子激发温度和分子振动温度均随电压的增加而增加,并且电子激发温度随电压的变化速率大于分子振动温度的变化速率。  相似文献   

10.
设计了水电极放电装置,在空气/氩气混合气体中实现了大面积沿面放电。采用发射光谱法,对分子振动温度、电子平均能量和电子激发温度等随气压的变化进行了研究。根据氮分子第二正带系(C3ΠuB3Πg)的发射谱线计算出氮分子的振动温度;使用Ar 763.51 nm(2P6→1S5)和772.42 nm(2P2→1S3)的两条发射谱线的强度比得到电子激发温度;通过氮分子离子391.4 nm和氮分子337.1 nm两条发射谱线的相对强度之比得出了电子的平均能量的变化。实验研究了发射光谱随气压的变化,发现其强度随着气压的增加而增强,且其整个轮廓和谱线强度之比也发生变化。随着气压从0.75×105Pa升高到1×105Pa,分子振动温度、电子激发温度和电子能量均呈下降趋势。  相似文献   

11.
空气和氩气混合气体的双水电极介质阻挡放电装置中,在电压升高过程中首次发现了两种由亮点和暗点组成的亮暗点菱形斑图。通过观察斑图照片可以发现: 第一种菱形斑图(菱形斑图Ⅰ)中的暗点处于由亮点组成的菱形单元的中心;第二种菱形斑图(菱形斑图Ⅱ)中的暗点恰好处于周围其他三个亮点的中心位置。利用发射光谱法,通过采集氮分子(N2)第二正带系(C3ΠuB3Πg)发射谱线和氩原子696.54 nm(2P2→1S5)谱线的展宽,研究了两种菱形斑图中亮点和暗点的分子振动温度和电子密度。实验发现: 两种菱形斑图中暗点的分子振动温度均高于亮点,相对菱形斑图Ⅰ来说,菱形斑图Ⅱ中的亮点和暗点的分子振动温度均升高;而菱形斑图Ⅰ中暗点的电子密度低于亮点,菱形斑图Ⅱ中亮点和暗点的电子密度却几乎相等。两种菱形斑图中电子密度表现出不同的变化趋势,且在菱形斑图Ⅱ中表现出的规律尤为特殊,因而采用高速录像机对菱形斑图Ⅱ进行短曝光拍摄观察斑图中亮点和暗点的成分,发现暗点是体放电和沿面放电共存的状态。进一步研究从菱形斑图Ⅰ到菱形斑图Ⅱ的演化过程中三种斑图中亮点的电子密度,结果发现: 演化中间过程的斑图中的亮点的电子密度最大,菱形斑图Ⅱ中亮点的电子密度最低。实验结果对于研究斑图的自组织形成过程具有参考作用。  相似文献   

12.
利用水电极介质阻挡放电装置,在氩气和空气的混合气体中,首次观察到了由点和线组成的八边形结构。采用发射光谱法,研究了八边形结构中的点和线的等离子体温度随压强的变化关系。利用氮分子第二正带系(C3ΠuB3Πg)的发射谱线,计算了点和线的分子振动温度;通过氮分子离子391.4 nm和氮分子394.1 nm两条发射谱线的相对强度比,研究了点和线的电子平均能量大小变化;利用氩原子763.26 nm(2P6→1S5)和772.13 nm(2P2→1S3)两条谱线强度比法,得到了点和线的电子激发温度。实验发现:在同一压强条件下,线比点的分子振动温度、电子平均能量以及电子激发温度均高;随着气体压强从40 kPa增大到60 kPa,点和线的分子振动温度、电子平均能量以及电子激发温度均减小。  相似文献   

13.
采用H型放电间隙的介质阻挡放电装置,在氩气和空气的混合气体中,得到了三种新颖的等离子体发光斑图。较于传统获得的斑图,这三种发光斑图是产生在单层气隙与双层气隙结合的气隙装置之中。通过相机拍摄到的斑图照片,可以发现单层气隙和双层气隙中微放电通道呈现的发光亮度、颜色、放电面积等状态有所不同,这表明微放电通道所处的等离子体状态可能各不相同。通过分析这三种等离子体发光斑图, 利用发射光谱法首次研究了单层气隙和双层气隙内微放电通道的等离子体参量。实验通过采集氮分子第二正带系(C3Πu→B3Πg)的发射谱线计算了单层气隙和双层气隙内微放电丝的分子振动温度,并进一步利用氩原子696.57 nm(2P2→1S5)谱线的展宽分析了单层气隙和双层气隙内微放电丝的电子密度。结果发现: 在左右相同厚度的双层气隙中,耦合微放电丝的分子振动温度基本相同,电子密度也趋于一致,单层气隙内微放电丝的分子振动温度要高于双层气隙内微放电丝,电子密度则小于双层气隙内微放电丝。单层气隙和双层气隙中不同微放电通道等离子体状态的差异性使之形成多种折射率的等离子体光子晶体,其周期性排布将具有更加丰富的带隙结构。  相似文献   

14.
在空气与氩气组成的混合气体的介质阻挡放电实验中,采用发射光谱法,首次研究了放电气隙分别为:1, 4和2 mm三层放电气隙中的放电丝的光谱特性。这与以往的单层放电气隙或者是双层放电气隙中的放电丝在光谱特性方面有很大的不同。实验通过采集氮分子第二正带系(C3ΠuB3Πg)谱线,计算出不同放电气隙中的放电丝的分子振动温度。利用氮分子离子391.4 nm谱线强度与氮分子394.1 nm谱线的强度之比得到不同放电气隙中放电丝的电子平均能量。增加氩气在混合气体中的比例,得到分子振动温度及电子平均能量随着氩气含量增加的变化趋势。实验结果表明:在同一氩气含量下,分子振动温度从小到大的顺序为:2 mm放电气隙,1 mm放电气隙,4 mm放电气隙。电子平均能量从小到大的顺序为:4 mm放电气隙,2 mm放电气隙,1 mm放电气隙。三层放电气隙中放电丝的分子振动温度及电子平均能量均随着氩气含量的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号