首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate an intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) network under physical-layer security, where users can partially offload confidential and compute-intensive tasks to a computing access point (CAP) with the help of the IRS. We consider an eavesdropping environment, where an eavesdropper steals information from the communication. For the considered MEC network, we firstly design a secure data transmission rate to ensure physical-layer security. Moreover, we formulate the optimization target as minimizing the system cost linearized by the latency and energy consumption (ENCP). In further, we employ a deep deterministic policy gradient (DDPG) to optimize the system performance by allocating the offloading ratio and wireless bandwidth and computational capability to users. Finally, considering the impacts from different resources, based on DDPG, seeing our optimization strategy as one criterion, we designed other criteria with different resource allocation schemes. And some simulation results are given to demonstrate that our proposed criterion outperforms other criteria.  相似文献   

2.
Computational efficiency is a direction worth considering in moving edge computing (MEC) systems. However, the computational efficiency of UAV-assisted MEC systems is rarely studied. In this paper, we maximize the computational efficiency of the MEC network by optimizing offloading decisions, UAV flight paths, and allocating users’ charging and offloading time reasonably. The method of deep reinforcement learning is used to optimize the resources of UAV-assisted MEC system in complex urban environment, and the user’s computation-intensive tasks are offloaded to the UAV-mounted MEC server, so that the overloaded tasks in the whole system can be alleviated. We study and design a framework algorithm that can quickly adapt to task offload decision making and resource allocation under changing wireless channel conditions in complex urban environments. The optimal offloading decisions from state space to action space is generated through deep reinforcement learning, and then the user’s own charging time and offloading time are rationally allocated to maximize the weighted sum computation rate. Finally, combined with the radio map to optimize the UAC trajectory to improve the overall weighted sum computation rate of the system. Simulation results show that the proposed DRL+TO framework algorithm can significantly improve the weighted sum computation rate of the whole MEC system and save time. It can be seen that the MEC system resource optimization scheme proposed in this paper is feasible and has better performance than other benchmark schemes.  相似文献   

3.
Intelligent reflecting surface (IRS)-enhanced dynamic spectrum access (DSA) is a promising technology to enhance the performance of the mobile edge computing (MEC) system. In this paper, we consider the integration of the IRS enhanced DSA technology to a MEC system, and study the pertinent joint optimization of the phase shift coefficients of the IRS, the transmission powers, the central processing unit (CPU) frequencies, as well as the task offloading time allocations of the secondary users (SUs) to maximize the average computation bits of the SUs. Due to the non-convexity, the formulated problem is difficult to solve. In order to tackle this difficulty, we decompose the optimization problem into tractable subproblems and propose an alternating optimization algorithm to optimize the optimization variables in an iterative fashion. Numerical results are provided to show the effectiveness and the correctness of the proposed algorithm.  相似文献   

4.
In this paper, we consider the latency minimization problem via designing intelligent reflecting surface (IRS)-assisted mobile edge computing (MEC) networks. For the scene when local users cannot complete all computing tasks independently, a common solution is transferring tasks to cloud servers. We consider that the MEC system contains multiple independent users, and each user sends task data to the base station in a partially offloaded manner. Our goal is to minimize the maximum latency for all users. The original problem is strongly non-convex, which caused difficulty to solve. We first introduce a new variable to transform the max–min problem into an alternative minimization problem, and then solve each optimization variable separately by the block coordinate descent method. Finally, our simulation experiments demonstrate that our proposed scheme obtain better performance with respect to other existing schemes.  相似文献   

5.
In this paper, we focus on minimizing energy consumption under the premise of ensuring the secure offloading of ground users. We used dual UAVs and intelligent reflective surfaces (IRS) to assist ground users in offloading tasks. Specifically, one UAV is responsible for collecting task data from ground users, and the other UAV is responsible for sending interference noise to counter potential eavesdroppers. The IRS can not only improve the transmission capacity of ground users, but also reduce the acceptance of eavesdroppers. The original problem is strong non-convex, so we consider using the block coordinate descent method. For the proposed sub-problems, we use Lagrangian duality and first-order Taylor expansion to obtain the results, and finally achieve system design through alternate optimization. The simulation results show that our proposed scheme is significantly better than other existing schemes.  相似文献   

6.
Wireless power transfer (WPT) and mobile edge computing (MEC) are two advanced technologies that could improve the computing power and range of mobile devices. However, by integrating the unmanned aerial vehicle (UAV) into wireless powered MEC systems, wireless energy transfer will be susceptible to the “double near–far” effect. Therefore, in order to further overcome the influence of the “double near–far” effect, this paper considers the optimization of time slot allocation for UAV-assisted wireless powered cooperative MEC system, which includes an access point (UAV) and two mobile devices. The purpose of the study is to minimize the total transmission energy of the UAV while satisfying the delay and size of the computational tasks, so this paper proposed a 2:1:1 time-slot optimization allocation method. The method exploits the synergy of users so that the mobile device which is closer to the UAV acts as an offloading relay, by combining power and time slot optimization to minimize the total energy consumption of the UAV. Compared with the equal time slot scheme before the improvement, this method can not only utilize the wireless transmission energy to charge the mobile device for more time in the first period, but also can save the time of data transmission of the closer device in the third period, and it can enhance the rate of data transmission of the mobile devices at the same time. The results show that the task capacity of the system computed will be increased compared to the original scheme; the total transmission rate of the whole system is also improved by the same order of magnitude. The simulation results verify the effectiveness and reliability of the algorithm of the paper, and the comprehensive performance of the system can be maximized by the flexible offloading algorithm.  相似文献   

7.
During the last decade, research and development in the field of multi access edge computing (MEC) has rapidly risen to prominence. One of the factors propelling MEC’s evolution is the ability to deploy edge servers capable of providing both communication and computational services in close proximity to the mobile user terminal. MEC has been regarded as a potentially transformative technique for fifth-generation (5G) and beyond 5G (B5G) wireless communication systems, as well as a possible complement to traditional cloud computing. Additionally, unmanned aerial vehicles (UAVs) integrated with MEC will play a critical role by introducing an additional mobility based computational layer to provide more secure, efficient and faster services. UAV enabled MEC offers seamless connectivity, fulfilling the promise of 5G’s ubiquitous connectivity. Due to the enormous interest in UAV enabled MEC, there has been a tremendous increase in the number of published research articles in this domain; however, the research area still lacks a systematic study and categorization. We present a systematic literature review (SLR) on UAV enabled MEC, examining and analyzing data on the current state of the art using preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. To streamline our assessment, this study analyzes several research papers carefully selected through a multi-stage process satisfying the eligibility criteria defined in the paper. One of the SLR’s primary contributions is to broadly classify the research in the UAV enabled MEC domain into different categories including energy efficiency, resource allocation, security, architecture, and latency. We have identified key findings, technology, and pros and cons for the selected articles under each category. Additionally, we discuss the key open issues related to scalability and fairness, resource allocation and offloading optimization, service delivery with a focus on quality of experience (QoE) and quality of service (QoS), and standardization. Finally, we discuss several future research directions that would address the aforementioned issues and emerging use cases for UAV enabled MEC.  相似文献   

8.
This paper studies artificial noise (AN)-aided beamforming design in an intelligent reflecting surface (IRS)-assisted system empowered by simultaneous wireless information and power transfer (SWIPT) technique. Multiple power splitting (PS) single-antenna receivers simultaneously receive information and energy from a multi-antenna base station (BS). Although all users are legitimate, in each transmission interval only one receiver is authorized to receive information and the others are only allowed to harvest power which are considered as unauthorized receivers (URs). To prevent information decoding by URs, AN signal is transmitted from the BS. We adopt a non-linear model for energy harvesting. In the optimization problem, we minimize the total transmit power, and for this purpose, we utilize an alternating optimization (AO) algorithm. For the non-convex rank-one constraint for IRS phase shifts, we utilize a sequential rank-one constraint relaxation (SROCR) algorithm. In addition to single antenna URs scenario, we investigate multi-antenna URs scenario and evaluate their performance. Simulation results validate the effectiveness of using IRS.  相似文献   

9.
As an novel paradigm, computation offloading in the mobile edge computing (MEC) system can effectively support the resource-intensive applications for the mobile devices (MD) equipped with limited computing capability. However, the hostile radio transmission and data leakage during the offloading process may erode the MEC system’s potential. To tackle these hindrances, we investigate an IRS-assisted secure MEC system with eavesdroppers, where the intelligent reflecting surface (IRS) is deployed to enhance the communication between the MD and the AP equipped with edge servers and the malicious eavesdroppers may attack the wireless data offloaded by MD. The MD opt for offloading part of the tasks to the edge server for execution to support the computation-intensive applications. Moreover, the relevant latency minimization problem is formulated by optimizing the offloading ratio, the allocation of edge server computing capability, the multiple-user-detection (MUD) matrix and the IRS phase shift parameters, subject to the constraints of edge computation resource and practical IRS phase shifts. Then, the original problem is decouple into two subproblem, and the computing and communication subproblems are alternatively optimized by block coordinate descent (BCD) method with low complexity. Finally, simulation results demonstrate that the proposed scheme can significantly enhance the performance of secure offloading in the MEC system.  相似文献   

10.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes.  相似文献   

11.
In this paper, intelligent reflecting surface (IRS) technology is employed to enhance physical layer security (PLS) for spectrum sharing communication systems with orthogonal frequency division multiplexing (OFDM). Aiming to improve the secondary users’ secrecy rates, a design problem for jointly optimizing the transmission beamforming of secondary base station (SBS), the IRS’s reflecting coefficient and the channel allocation is formulated under the constraints of the requirements of minimum data rates of primary users and the interference between users. As the scenario is highly complex, it is quite challenging to address the non-convexity of the optimization problem. Thus, a deep reinforcement learning (DRL) based approach is taken into consideration. Specifically, we use dueling double deep Q networks (D3QN) and soft Actor–Critic (SAC) to solve the discrete and continuous action space optimization problems, respectively, taking full advantage of the maximum entropy RL algorithm to explore all possible optimal paths. Finally, simulation results show that our proposed approach has a great improvement in security transmission rate compared with the scheme without IRS and OFDM, and our proposed D3QN-SAC approach is more effective than other approaches in terms of maximum security transmission rate.  相似文献   

12.
In this paper, we consider the Intelligent reflecting surface (IRS)-assisted cognitive radio (CR) network, in which the IRS is applied to improve the spectral efficiency of secondary users. In specific, the advantages of applying IRS is double: it can not only improve the transmission rate of the secondary users, but also reduce the interference from the secondary users to the primary users, which allow the secondary users to increase the transmission power correspondingly. The original problem is formulated by simultaneously consider the maximum power limitation of the secondary users and the Quality of Service (QoS) requirement of the primary users, which expressed by the interference temperature (IT). The formulated problem is non-convex and difficult to solve directly. We apply the alternating optimization (AO) algorithm to split the original problem into two sub-problems. For the first sub-problem, we transform it into a convex problem and for the second sub-problem, we use the successive convex approximation method to obtain the corresponding results. The simulation experiments show that the performance of our proposed scheme is better than existing schemes.  相似文献   

13.
Nowadays, more and more multimedia services are supported by Mobile Edge Computing (MEC). However, the instability of the wireless environment brings a lot of uncertainty to the computational offloading. Additionally, intelligent reflecting surface (IRS) is considered as a potential technology to enhance Quality of Service (QoS). Therefore, in this paper, we establish a framework for IRS-assisted MEC computational offloading to solve this problem and take fairness optimization as a key point involving communication and computing resources. Minimize user consumption by optimizing bandwidth allocation, task offloading ratio, edge computing resources, transmission power and IRS phase shifts. Firstly, we decompose the problem into three aspects, such as bandwidth allocation, computing resource allocation, transmission power and IRS phase shifts. Then, an alternative optimization algorithm is proposed to find the optimum solution and its convergence is proved. Secondly, since the optimization problem on transmission power and IRS phase shifts is non-convex, we propose Riemann gradient descent (R-SGD) algorithm to solve it. Finally, numerical results show that our proposed algorithm performs better than other algorithms and achieves a superiority in the framework.  相似文献   

14.
This work investigates the physical layer secrecy performance of a hybrid satellite/unmanned aerial vehicle (HS-UAV) terrestrial non-orthogonal multiple access (NOMA) network, where one satellite source intends to make communication with destination users via a UAV relay using NOMA protocol in the existence of spatially random eavesdroppers. All the destination users randomly distributed on the ground comply with a homogeneous Poisson point process in the basis of stochastic geometry. Adopting Shadowed-Rician fading in satellite-to-UAV and satellite-to-eavesdroppers links while Rayleigh fading in both UAV-to-users and UAV-to-eavesdroppers links, the theoretical expressions for the secrecy outage probability (SOP) of the paired NOMA users are obtained based on the distance-determined path-loss. Also, the asymptotic behaviors of SOP expressions at high signal-to-noise ratio (SNR) regime are analyzed and the system throughputs of the paired NOMA users are examined for gaining further realization of the network. Moreover, numerical results are contrasted with simulation to validate the theoretical analysis. Investigation of this work shows the comparison of SOP performance for the far and near user, pointing out the SOP performance of the network depends on the channel fading, UAV coverage airspace, distribution of eavesdroppers and some other key parameters.  相似文献   

15.
With the increase in capacity demands and the requirement of ubiquitous coverage in the fifth generation and beyond wireless communications networks, unmanned aerial vehicles (UAVs) have acquired a great attention owing to their outstanding characteristics over traditional base stations and relays. UAVs can be deployed faster and with much lower expenditure than ground base stations. In addition, UAVs can enhance the network performance thanks to their strong line-of-sight link conditions with their associated users and their dynamic nature that adapts to varying network conditions. Optimization of the UAV 3D locations in a UAV-assisted wireless communication network was considered in a large body of research as it is a critical design issue that greatly affects communication performance. Although the topic of UAV placement optimization was considered in few surveys, these surveys reviewed only a small part of the growing literature. In addition, the surveys were brief and did not discuss many important design issues such as the objectives of the optimization problem, the adopted solution techniques, the air-to-ground channel models, the transmission media for access and backhaul links, the limited energy nature of the UAV on-board batteries, co-channel interference and spectrum sharing, the interference management, etc. Motivated by the importance of the topic of UAV placement optimization as well as the need for a detailed review of its recent literature, we survey 100 of the recent research papers and provide in-depth discussion to fill the gaps found in the previous survey papers. The considered research papers are summarized and categorized to highlight the differences in the deployment scenario and system model, the optimization objectives and parameters, the proposed solution techniques, and the decision-making strategies and many other points. We also point to some of the existing challenges and potential research directions that have been considered in the surveyed literature and that requires to be considered  相似文献   

16.
In this paper, we consider a non-orthogonal multiple access (NOMA) system assisted by intelligent reflecting surface (IRS). As an emerging technology that has received widespread attention, IRS can reconfigure the wireless channel environment by adjusting the relationship between the incident angle and the exit angle, thereby improving system performance. Our goal is to use the flexible assistance of IRS to achieve the maximum energy efficiency of the NOMA system. Our design objects are the beam vector design of the base station and the phase matrix design of the IRS. The original problem is highly non-convex. We consider using the block coordinate descent method to design the phase matrix and beam vector separately. Simulation results show that our proposed scheme has better performance than traditional OMA and systems without IRS assistance.  相似文献   

17.
Channel secret key generation (CSKG), assisted by the new material intelligent reflecting surface (IRS), has become a new research hotspot recently. In this paper, the key extraction method in the IRS-aided low-entropy communication scenario with adjacent multi-users is investigated. Aiming at the problem of low key generation efficiency due to the high similarity of channels between users, we propose a joint user allocation and IRS reflection parameter adjustment scheme, while the reliability of information exchange during the key generation process is also considered. Specifically, the relevant key capability expressions of the IRS-aided communication system is analyzed. Then, we study how to adjust the IRS reflection matrix and allocate the corresponding users to minimize the similarity of different channels and ensure the robustness of key generation. The simulation results show that the proposed scheme can bring higher gains to the performance of key generation.  相似文献   

18.
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) are regarded as promising technologies to improve the computation capability and offloading efficiency of mobile devices in the sixth-generation (6G) mobile system. This paper mainly focused on the hybrid NOMA-MEC system, where multiple users were first grouped into pairs, and users in each pair offloaded their tasks simultaneously by NOMA, then a dedicated time duration was scheduled to the more delay-tolerant user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) was applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrated the hybrid SIC scheme, which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL)-based algorithm was proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimized the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results showed that the proposed algorithm converged fast, and the NOMA-MEC scheme outperformed the existing orthogonal multiple access (OMA) scheme.  相似文献   

19.
Mobile edge computing (MEC) is a key feature of next-generation mobile networks aimed at providing a variety of services for different applications by performing related processing tasks closer to the users. With the advent of the next-generation mobile networks, researchers have turned their attention to various aspects of edge computing in an effort to leverage the new capabilities offered by 5G. So, the integration of software defined networking (SDN) and MEC techniques was seriously considered to facilitate the orchestration and management of Mobile Edge Hosts (MEH). Edge clouds can be installed as an interface between the local servers and the core to provide the required services based on the known concept of the SDN networks. Nonetheless, the problem of reliability and fault tolerance will be of great importance in such networks. The paper introduced a dynamic architecture that focuses on the end-to-end mobility support required to maintain service continuity and quality of service. This paper also presents an SDN control plane with stochastic network calculus (SNC) framework to control MEC data flows. In accordance with the entrance processes of different QoS-class data flows, closed-form problems were formulated to determine the correlation between resource utilization and the violation probability of each data flow. Compared to other solutions investigated in the literature, the proposed approach exhibits a significant increase in the throughput distributed over the active links of mobile edge hosts. It also proved that the outage index and the system’s aggregate data rate can be effectively improved by up to 32%.  相似文献   

20.
In a multicarrier NOMA system, the subchannel allocation (SA) and power allocation (PA) are intricately linked and essential for improving system throughput. Also, for the successful execution of successive interference cancellations (SIC) at the receiver, a minimum power gap is required among users. As a result, this research comes up with optimization of the SA and PA to maximize the sum rate of the NOMA system while sticking to the minimum power gap constraint in addition to minimum user rate, maximum number of users in a subchannel and power budget constraints for downlink transmission in multicarrier NOMA networks. To ensure that the formulated problem can be solved in polynomial time, we propose solving it in two stages; SA followed by PA. To obtain SA, we investigate four algorithms: Greedy, WSA, WCA, and WCF. For PA, we propose a low-complexity algorithm. We compare the performance of the proposed method with benchmark method that does not consider the minimum power gap constraint. We conclude that employing WCF algorithm with the PA algorithm gives the best sum rate performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号