首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vehicle-to-everything (V2X) communication aims to achieve significantly improved safety and traffic efficiency, more particularly at road intersection where high percentage of accidents usually occur. The existing vehicular radio frequency (V-RF) based V2X utilizes relaying for improving safety message dissemination at road intersections. For a high traffic density scenario, the V-RF communication with relaying solution may suffer from large latency and low packet delivery rates due to channel congestion. In this paper, we explore cooperative non-orthogonal multiple access (NOMA) communication assisted hybrid vehicular visible light communication (V-VLC) and V-RF communication for improving safety message dissemination and enabling massive connectivity among vehicles for road intersection scenarios. We develop a stochastic geometry based analytical framework to model cooperative NOMA (C-NOMA) transmissions subject to interference imposed by other vehicles on roads. We also examine the impact of vehicles headlights radiation pattern viz. Lambertian and empirical path loss models on statistical characterization of the proposed C-NOMA supported hybrid solution. Our numerical findings reveal that C-NOMA assisted hybrid V-VLC/V-RF system leads to considerable improvement in outage performance and average achievable rate as compared to traditional V-RF solution with relaying. Interestingly, Lambertian model offers a lower outage and higher average achievable rate compared to the empirical model for the proposed hybrid solution. Further, we observe the performance improvement using maximal ratio combining (MRC) considering NOMA transmission for the proposed hybrid solution. The presented framework may serve as an alternative for cooperative intelligent transportation system (C-ITS) to meet diverse application needs for beyond 5G (B5G) V2X networks.  相似文献   

2.
With the energy consumption of wireless networks increasing, visible light communication (VLC) has been regarded as a promising technology to realize energy conservation. Due to the massive terminals access and increased traffic demand, the implementation of non-orthogonal multiple access (NOMA) technology in VLC networks has become an inevitable trend. In this paper, we aim to maximize the energy efficiency in VLC-NOMA networks. Assuming perfect knowledge of the channel state information of user equipment, the energy efficiency maximization problem is formulated as a mixed integer nonlinear programming problem. To solve this problem, the joint user grouping and power allocation (JUGPA) is proposed including user grouping and power allocation. In user grouping phase, we utilize the average of channel gain among all user equipment and propose a dynamic user grouping algorithm with low complexity. The proposed scheme exploits the channel gain differences among users and divides them into multiple groups. In power allocation phase, we proposed a power allocation algorithm for maximizing the energy efficiency for a given NOMA group. Thanks to the objective function is fraction form and non-convex, we firstly transform it to difference form and convex function. Then, we derive the closed-form optimal power allocation expression that maximizes the energy efficiency by Dinkelbach method and Lagrange dual decomposition method. Simulation results show that the JUGPA can effectively improve energy efficiency of the VLC-NOMA networks.  相似文献   

3.
Data traffic forwarding and network optimization is essential to effective congestion management in software-defined vehicular networks, and it is necessary for software-defined vehicle networks (SDVN). SDVN is needed to optimize connection performance and network controls in dense and sparse networks to govern data flow between nodes as effectively as possible. Intelligent software-defined internet of vehicles (iSDIoVs) has recently emerged as a potential technology for future vehicular networks. It manages the vehicular ad hoc networks systematically. The link connection of moving vehicles from the central SDN controller may fail. It impacts the efficiency and communication performance because of the lack of connection between vehicles and infrastructure (V2I). The researchers have analyzed the network performance and mobility models in a dense and sparse network to maximize network performance by iSDIoVs. By integrating heterogeneous systems such as IEEE 802.11p and cellular networks into vehicular ad-hoc networks, it is possible to reduce buffer occupancy in iSDIoV and control the mobility and delay bound analysis in V2V communication. The SDN will provide flexibility and reliability to the vehicular networks. An SDN controller manages the data flow in the vehicular network and controls the flow matching rules in the control plane. The iSDIoV and queuing models improve the response time and resource utilization and enhance the network complexity analysis for traffic management services.  相似文献   

4.
In this article, a joint resource allocation of power, time, and sub-channels that minimizes the total energy consumption of users for Hybrid NOMA MEC Offloading is proposed. By formulating and solving the joint optimization problem, first we propose a novel optimal Hybrid NOMA scheme referred to as Switched Hybrid NOMA (SH-NOMA) for power and time allocation. Subsequently, we address sub-channel allocation as a three-dimensional assignment problem, and propose the Total-Reward Exchange Stable (TES) algorithm to solve it. Analytically, we show that SH-NOMA is more energy efficient than the Hybrid NOMA scheme in the literature and that the TES algorithm converges to a solution with less energy consumption than the widely used two-sided exchange stable algorithm. Finally, via simulations we demonstrate that the proposed methods outperform the results in the literature.  相似文献   

5.
This Letter proposes a model of indoor visible light communication(VLC) heterogeneous networks entirely based on LEDs with different specifications and applies non-orthogonal multiple access(NOMA) to it because of the narrow modulation bandwidth of LEDs. Moreover, a user-grouping scheme that is based on matching theory is proposed to improve the network achievable sum rate. Simulation results indicate that when each NOMA cluster contains 6 users, the proposed scheme has a 49.54% sum-rate enhancement compared with the traditional user-grouping scheme. As the number of users in each NOMA cluster increases, the proposed scheme performs better at the cost of computational complexity.  相似文献   

6.
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) are regarded as promising technologies to improve the computation capability and offloading efficiency of mobile devices in the sixth-generation (6G) mobile system. This paper mainly focused on the hybrid NOMA-MEC system, where multiple users were first grouped into pairs, and users in each pair offloaded their tasks simultaneously by NOMA, then a dedicated time duration was scheduled to the more delay-tolerant user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) was applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrated the hybrid SIC scheme, which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL)-based algorithm was proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimized the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results showed that the proposed algorithm converged fast, and the NOMA-MEC scheme outperformed the existing orthogonal multiple access (OMA) scheme.  相似文献   

7.
This paper proposes a deployment and trajectory scheme for fixed-wing unmanned aerial vehicles (UAVs) deployed as flying base stations in multi-UAV enabled non-orthogonal multiple access (NOMA) downlink communication. Specifically, the deployment of UAVs and power allocation of users are jointly optimized to maximize the sum-rate. Thereafter, the energy efficiency maximization problem is formulated to optimize the trajectory of UAVs by jointly considering the quality of service (QoS) requirement of users, various flight constraints, limited on-board energy, and users’ mobility. Initially, the existing users are divided into clusters by k-means clustering, where each cluster is served by a single UAV. Then, the clusters are further divided into multiple sub-clusters, each having a pair of near and far users. Orthogonal multiple access (OMA) is applied among sub-clusters and NOMA is applied to intra sub-cluster users. Lastly, the Balanced-grey wolf optimization (B-GWO) algorithm is proposed for solving the non-convex optimization problems. Simulation results prove the superiority of the B-GWO based deployment and trajectory algorithms compared to the benchmarks. In addition, the proposed B-GWO based trajectory algorithm achieves a near-optimal performance with an optimality gap of less than 1.5% compared to the exhaustive search.  相似文献   

8.
This paper investigates the physical layer security of an intelligent reflecting surface (IRS) aided non-orthogonal multiple access (NOMA) networks, where a remote user is regarded as an eavesdropper to intercept the information of nearby user. To evaluate the security performance of IRS-aided NOMA networks, a problem of maximizing achievable secrecy rate is formulated via jointly optimizing the beamforming and phase shifting. More specifically, we aim to tackle the non-convex problem by optimizing beamforming vector as well as phase shifting matrix with the assistance of block coordinate descent (BCD) and minorization maximization (MM) algorithms. Numerical results illustrate that: 1) The secrecy rates of IRS-aided NOMA with BCD and MM algorithms are superior to that of orthogonal multiple access schemes; 2) With increasing the number of reflecting elements, the secrecy rates of IRS-aided NOMA networks are achieved carefully; and 3) The IRS-aided NOMA networks are capable of relieving the transmission pressure of base station.  相似文献   

9.
This paper investigates the resource allocation problem in non-orthogonal multiple-access (NOMA) cellular networks underlaid with OMA-based device-to-device (D2D) communication. This network architecture enjoys the intrinsic features of NOMA and D2D communications; namely, spectral efficiency, massive connectivity, and low-latency. Despite these indispensable features, the combination of NOMA and D2D communications exacerbates the resource allocation problem in cellular networks due to the tight coupling among their constraints and conflict over access to shared resources. The aim of our work is to maximize the downlink network sum-rate, while meeting the minimum rate requirements of the cellular tier and underlay D2D communication, and incorporating interference management as well as other practical constraints. To this end, many-to-many matching and difference-of-convex programming are employed to develop a holistic sub-channels and power allocation algorithmic solution. In addition to analyzing the properties of the proposed solution, its performance is benchmarked against an existing solution and the traditional OMA-based algorithm. The proposed solution demonstrates superiority in terms of network sum-rate, users’ connectivity, minimum rate satisfaction, fairness, and interference management, while maintaining acceptable computational complexity.  相似文献   

10.
This paper proposes a resource allocation scheme for hybrid multiple access involving both orthogonal multiple access and non-orthogonal multiple access (NOMA) techniques. The proposed resource allocation scheme employs multi-agent deep reinforcement learning (MA-DRL) to maximize the sum-rate for all users. More specifically, the MA-DRL-based scheme jointly allocates subcarrier and power resources for users by utilizing deep Q networks and multi-agent deep deterministic policy gradient networks. Meanwhile, an adaptive learning determiner mechanism is introduced into our allocation scheme to achieve better sum-rate performance. However, the above deep reinforcement learning adopted by our scheme cannot optimize parameters quickly in the new communication model. In order to better adapt to the new environment and make the resource allocation strategy more robust, we propose a transfer learning scheme based on deep reinforcement learning (T-DRL). The T-DRL-based scheme allows us to transfer the subcarrier allocation network and the power allocation network collectively or independently. Simulation results show that the proposed MA-DRL-based resource allocation scheme can achieve better sum-rate performance. Furthermore, the T-DRL-based scheme can effectively improve the convergence speed of the deep resource allocation network.  相似文献   

11.
Computation offloading in mobile edge computing (MEC) systems emerges as a novel paradigm of supporting various resource-intensive applications. However, the potential capabilities of MEC cannot be fully unleashed when the communication links are blocked by obstacles. This paper investigates a double-reconfigurable-intelligent-surfaces (RISs) assisted MEC system. To efficiently utilize the limited frequency resource, the users can partially offload their computational tasks to the MEC server deployed at base station (BS) by adopting non-orthogonal multiple access (NOMA) protocol. We aim to minimize the energy consumption of users with limited resource by jointly optimizing the transmit power of users, the offloading fraction of users and the phase-shifts of RISs. Since the problem is non-convex with highly coupled variables, the block coordinate descent (BCD) method is leveraged to alternatively optimize the decomposed four subproblems. Specifically, we invoke successive convex approximation for low complexity (SCALE) and Dinkelbach technique to tackle the fractional programming of power optimization. Then the offloading fraction is obtained by closed-form solution. Further, we leverage semidefinite relaxation (SDR) and bisection method to address the phase-shifts design of double RISs. Finally, numerical results illustrate that the proposed double-RIS assisted NOMA scheme is capable of efficiently reducing the energy consumption and achieves significant performance gain over the benchmark schemes.  相似文献   

12.
Cooperative Non-Orthogonal Multiple Access (NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT) communication can not only effectively improve the spectrum efficiency and energy efficiency of wireless networks but also extend their coverage. An important design issue is to incentivize a full duplex (FD) relaying center user to participate in the cooperative process and achieve a win–win situation for both the base station (BS) and the center user. Some private information of the center users are hidden from the BS in the network. A contract theory-based incentive mechanism under this asymmetric information scenario is applied to incentivize the center user to join the cooperative communication to maximize the BS’s benefit utility and to guarantee the center user’s expected payoff. In this work, we propose a matching theory-based Gale–Shapley algorithm to obtain the optimal strategy with low computation complexity in the multi-user pairing scenario. Simulation results indicate that the network performance of the proposed FD cooperative NOMA and SWIPT communication is much better than the conventional NOMA communication, and the benefit utility of the BS with the stable match strategy is nearly close to the multi-user pairing scenario with complete channel state information (CSI), while the center users get the satisfied expected payoffs.  相似文献   

13.
This work investigates performance of system throughput in intelligent reflecting surfaces (IRSs)-enabled phase cooperative non-orthogonal multiple access (NOMA) framework. By exploiting heterogeneous cognitive radio networks concept the aim is to maximize the sum rate of secondary users in the proposed phase cooperative downlink network configuration via optimization solutions. However, the optimization problem comes out to be NP-hard and precludes direct solution. Hence, an alternating optimization is applied at the primary network to solve the maximization problem by exploiting the transmit beamforming (BF) at the power station (PS) and phase shift optimization at the IRS. Later, sum rate maximization for secondary network is performed by utilizing phase shifts of primary network via phase cooperation. In order to find global optimal solutions for active beamformers at both PSs, a branch-reduce-and-bound (BRnB) method is used whereas, passive phase shift optimization at the primary PS is performed via a simple iterative solution, i.e., the element-wise block coordinate descent method. For the proposed framework, Monte-Carlo simulations are performed where the optimality of the global solution is compared with heuristic BF methods including minimum-mean-square-error/regularized zero-forcing-beamforming (ZFBF) and ZFBF. The BRnB algorithm sets an upper performance bound by improving the sum rate of users in comparison with the conventional heuristic BF schemes. This work signifies the utilization of phase cooperation in IRS-assisted NOMA networks for a multi-user environment.  相似文献   

14.
The multi-hop Device-to-Device (M-D2D) communication has a potential to serve as a promising technology for upcoming 5G networks. The prominent reason is that the M-D2D communication has the potential to improve coverage, enhanced spectrum efficiency, better link quality, and energy-efficient communication. One of the major challenges for M-D2D communication is the mitigation of interference between the cellular user (CUs) and M-D2D users. Considering this mutual interference constraint, this work investigates the problem of optimal matching of M-D2D links and CUs to form spectrum-sharing partners to maximize overall sum rates of the cell under QoS and energy efficiency (EE) constraints. In this paper, we investigate the interference management for multi-hop (more than one-hop) D2D communication scenarios where we propose a channel assignment scheme along with a power allocation scheme. The proposed channel assignment scheme is based on the Hungarian method in which the channel assignment for M-D2D pairs is done by minimum interference value. The power allocation scheme is based on Binary Particle swarm optimization (BPSO). This scheme calculates the specific power values for all the individual M-D2D links. We have done a comprehensive simulation and the result portrays that our proposed scheme performs better compared to the previous work mentioned in the literature. The results clearly indicate that the proposed scheme enhances the EE of up to 13% by producing the optimal assignment of channels and power for the CUs and M-D2D users.  相似文献   

15.
In a multicarrier NOMA system, the subchannel allocation (SA) and power allocation (PA) are intricately linked and essential for improving system throughput. Also, for the successful execution of successive interference cancellations (SIC) at the receiver, a minimum power gap is required among users. As a result, this research comes up with optimization of the SA and PA to maximize the sum rate of the NOMA system while sticking to the minimum power gap constraint in addition to minimum user rate, maximum number of users in a subchannel and power budget constraints for downlink transmission in multicarrier NOMA networks. To ensure that the formulated problem can be solved in polynomial time, we propose solving it in two stages; SA followed by PA. To obtain SA, we investigate four algorithms: Greedy, WSA, WCA, and WCF. For PA, we propose a low-complexity algorithm. We compare the performance of the proposed method with benchmark method that does not consider the minimum power gap constraint. We conclude that employing WCF algorithm with the PA algorithm gives the best sum rate performance.  相似文献   

16.
This work investigates the physical layer secrecy performance of a hybrid satellite/unmanned aerial vehicle (HS-UAV) terrestrial non-orthogonal multiple access (NOMA) network, where one satellite source intends to make communication with destination users via a UAV relay using NOMA protocol in the existence of spatially random eavesdroppers. All the destination users randomly distributed on the ground comply with a homogeneous Poisson point process in the basis of stochastic geometry. Adopting Shadowed-Rician fading in satellite-to-UAV and satellite-to-eavesdroppers links while Rayleigh fading in both UAV-to-users and UAV-to-eavesdroppers links, the theoretical expressions for the secrecy outage probability (SOP) of the paired NOMA users are obtained based on the distance-determined path-loss. Also, the asymptotic behaviors of SOP expressions at high signal-to-noise ratio (SNR) regime are analyzed and the system throughputs of the paired NOMA users are examined for gaining further realization of the network. Moreover, numerical results are contrasted with simulation to validate the theoretical analysis. Investigation of this work shows the comparison of SOP performance for the far and near user, pointing out the SOP performance of the network depends on the channel fading, UAV coverage airspace, distribution of eavesdroppers and some other key parameters.  相似文献   

17.
In this paper, we investigate a multiple users cooperative overlay cognitive radio non-orthogonal multiple access (CR-NOMA) network in the presence of imperfect successive interference cancellation (SIC) and imperfect channel state information (CSI). In the context of cellular network, cell-center cognitive secondary users act as relays to assist transmission from the primary user (PU) transmitter to the cell-edge PU receiver via NOMA. According to the received signals between the primary transmitter and multiple cognitive secondary center users, the best cell-center cognitive SU with the maximum signal to noise ratio (SNR) is selected to transmit the PU’s signals and its own signal to cell-edge users through NOMA principle. Then, the PU cell-edge user combine the signals received from direct transmission in the first phase and relay transmission from the best cell-center cognitive SU in the second phase by selection combining (SC). To measure the performance of the system quantitatively, we derive the end-to-end outage probability and capacity for the primary and secondary networks by taking the imperfect SIC and CSI into consideration. Finally, the performance analysis is validated by the simulations, and show that serious interference caused by imperfect SIC and (or) imperfect CSI reduce the system performance.  相似文献   

18.
Energy efficiency (EE) is an important parameter for the next generation cellular communications which is not limited to voice and text messages only. Device-to-Device (D2D) communication is being viewed as a promising technology to support heterogeneous applications involved in future cellular networks. Due to its short range communication, less amount of power is sufficient to make a successful transmission. By exploiting this feature of D2D, this paper proposes an energy-efficient resource allocation scheme for joint uplink/downlink (UL/DL) D2D considering many-to-one matching criterion for channel reuse among users. In this paper, total EE of D2D pairs (DPs) is taken as a performance metric to be optimized subject to quality of service (QoS) satisfaction for cellular users (CUs) within the power budgets of all the users. An iterative scheme is designed for joint channel and power optimization problem. Simulation results show the convergence of joint iterative algorithm and verify significant performance improvement over other schemes.  相似文献   

19.
Having shown promising performance with high flexibility and efficiency in vehicular edge computing (VEC) network, the parked vehicles (PVs) received an increasing number of attentions in recent years. However, PVs’ residual battery power restricts their running time. In addition, there is still no alternate resource pool for the PVs to cope with the emergencies in the previous VEC framework. To alleviate these problems, we model a cloud-assisted parked vehicular edge computing (PVEC) framework, in which the PVs are classified based on their residual battery power. PVs corporate with the cloud servers (CSs) for the computational resources provision. In addition, we formulate the utilities of the service provider (SP) and PVs and design a contract-based resource allocation problem for the maximization of the SP’s utility. Considering that it is intractable to solve the optimization problem directly, the primal problem is simplified and decoupled into two sub-problems. To design the optimal contracts, we solve the sub-problems by Lagrangian multiplier method and dual function. Simulation results prove that the utilities of PVs can reach to the maximum when they choose the contract corresponding to their types. In addition, the simulation results illustrate the superiority of proposed scheme over previous schemes in improving the utilities of the SP and social welfare.  相似文献   

20.
In this paper, we study the performance of the non-orthogonal multiple access (NOMA) networks. By considering two practical factors of residual hardware impairments (RHIs) and imperfect serial interference cancellation (ipSIC), we adopt effective capacity as a metric to characterize the effects of latency on the performance of NOMA networks and derive the analytical expressions of the effective capacity for the near user (NU) and the far user (FU). For further insights, we provide asymptotic analysis by invoking high signal-to-noise ratio (SNR) slope and high SNR power offset. Numerous analytical and simulated results have shown that: (1) The effective capacities of NU and FU are positively proportional to the SNR at low SNR, while at high SNR, the effective capacities approach to the constants; (2) Comparing the two users of the considered NOMA network, the effective capacity of NU shows pronounced advantages under the requirements of low quality of service. (3) RHIs are detrimental to the effective capacities of both NU and FU, especially for the high SNR regime. (4) The effective capacity of NU is limited by ipSIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号