首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
左剑  张亮亮  巩辰  张存林 《物理学报》2016,65(1):10704-010704
目前太赫兹辐射信号的功率不高,辐射带宽也较窄,这些对于生物化学、含能材料的太赫兹检测应用领域来说是一大限制因素,因此如何获得宽谱高功率的太赫兹源对于太赫兹时域光谱系统的发展是非常重要的;另一方面,常规的太赫兹系统是在自由空间传输探测的,测量过程需要在氮气或者干燥空气环境中进行,以克服空气中水的吸收干扰,同时自由空间中的光场与物质相互作用的模式又降低了物质检测的灵敏度,这对于痕量物质检测来说构成了挑战.面对这一问题,太赫兹片上系统利用微纳结构中的局域场效应实现对物质的低浓度检测,此方案有助于解决这一应用难题.综上所述,本文分成以下两部分阐述:首先阐述了纳米金属薄膜作为新的太赫兹源,它可以同时产生非相干的和相干的太赫兹信号,其输出为超过100 THz的太赫兹-红外辐射,功率高达10 mW,这种超宽谱和高功率现象主要是由于非相干的热辐射效应引起的;第二,阐述了基于不同传输线结构、不同基底材料的太赫兹片上系统结构设计和光谱应用.基于共面带状线结构和聚合物材料基底的太赫兹片上系统有着较低的损耗,能够实现超过2 THz带宽的测量和生物化学应用.  相似文献   

2.
太赫兹时域光谱(THz-TDS)已被用于研究包括液体,半导体,爆炸物和气体等多种材料。然而自由空间太赫兹光谱系统存在着一些检测局限性,如微量物质难以被检测、系统尺寸难以实现微型化、空气中水的强烈吸收引起的信号衰减较大等问题。为了解决这些问题,研究人员设计了基于金属波导传输线结构的太赫兹芯片集成器件,通过飞秒红外激光激励传输线上的光电导材料实现太赫兹波的产生和检测。然而,在这些芯片上传输的太赫兹信号的频谱宽度很难达到自由空间太赫兹时域光谱系统的频带宽度,一个重要原因是由于传输信号受到随频率增加的传输线损耗所导致的衰减。通常这些损耗主要由三个部分组成:导体损耗,介电损耗和辐射损耗。研究表明:使用低介电常数材料作为共面传输线的衬底,将减少这种介电常数的失配,从而避免冲击波辐射损失;使用具有低损耗角正切的基底材料可以减少太赫兹传输线的损耗。环烯烃聚合物(COP)是一种具有环状烯烃结构的非晶性透明共聚物的材料,在太赫兹波段具有很高的透射率,为了探究这种材料是否能用于共面传输线的衬底,需要通过太赫兹时域光谱技术和介电函数理论分析它在太赫兹频段的光谱和介电特性,以及对这种材料作为基底时用在太赫兹传输线的传输特性进行仿真计算分析。使用透射式太赫兹时域光谱系统,对三种COP、熔融石英和PMMA进行了光谱测试,提取了它们的透射时域信号,采用Dorney和Duvillaret等提出的物理模型计算复介电函数。实验表明:与其他两种材料相比,COP材料在1 THz处的透过率更高,可以达到94.5%,同时介电损耗和介电常数更低,其中介电损耗在1 THz处达到4.31×10-4,因此将COP作为传输线基底材料时能有效减少基底的介电损耗。同时COP材料的介电常数在0.2~2.8 THz范围内维持在约2.3的水平,也有效减弱了辐射损耗。对实验材料基底组成的共面波导传输线进行了HFSS模拟,获得了它们的正向传输衰减系数(S21 parameter),并对由基底引起的介电损耗和辐射损耗进行了计算分析。模拟和计算结果也表明在同一传输线结构下,与其他材料相比COP作为基底时的损耗更小。通过太赫兹时域光谱法与介电响应分析,表明了在太赫兹波段具有较低介电常数的COP材料更适合作为太赫兹传输线结构的基底材料,它可以有效的降低因基底引起的介电损耗和辐射损耗。这为太赫兹传输线的设计过程中衬底材料的选择与应用提供了实验和理论依据。  相似文献   

3.
太赫兹(THz)波在物质检测方面发挥着巨大的作用,是一种非常有潜力的生化传感工具。但是传统的太赫兹时域光谱系统(TDS)结构复杂,系统的集成度低,占用空间较大。所以,如何对THz波进行有效引导、实现集成化传输并得到高质量光谱就成为太赫兹光谱系统的研究热点。太赫兹片上系统是将THz的产生、传输以及探测都集成到同一芯片上,然后通过相干探测的方法获得THz时域光谱。它可以实现对多种样品的检测,尤其在对难于取样的微量样品探测方面具有广泛的应用价值。它无需光路准直,操作简便,成品率高。两个研究工作都是基于低温砷化镓(LT-GaAs)外延片开展的。首先将一根直径为200 μm的铜线固定在LT-GaAs外延片的上方,通过真空蒸镀的方法制备出天线电极,同时得到天线间隙,研制出基于LT-GaAs外延片的THz天线。利用波长为800 nm的飞秒激光对其进行测试,得到了质量较高的THz信号,验证了天线的实用性。然后在另一外延片上利用光刻微加工工艺制作出传输线和微电极,得到了集成的THz片上系统。使用波长为1 550 nm的飞秒激光分别激发片上系统的太赫兹产生天线和探测天线,天线产生的太赫兹波在传输线上传播,在探测端同样得到了质量较高的THz时域信号,证实了THz片上系统的可行性。该方法省去了腐蚀牺牲层以及LT-GaAs薄膜的转移、键合等步骤,极大地提高了片上系统的成品率,避免了薄膜转移过程中易破碎及腐蚀液存在毒性的问题。最后,研究了外加电压对从片上系统中获得的THz波性能的影响,结果为电压越高,THz波的信号强度越强;另外,通过在传输线上方垂直放置铜箔的方法验证了THz波沿着传输线传播的事实。该研究中采用的基于LT-GaAs外延片的片上系统的制备方法简单,制作周期短,制作过程安全,应用领域广泛,这为将来与微流控芯片相结合实现对液体样品的探测打下了基础。  相似文献   

4.
太赫兹滤波器是太赫兹通信、太赫兹成像和太赫兹检测等太赫兹应用系统中不可或缺的功能器件。按照不同的分类方式,滤波器有不同的种类,常见的按照选频功能可分为高通滤波器、低通滤波器、带阻滤波器和带通滤波器。为了实现在太赫兹波段的滤波效果,世界各地的研究人员利用不同的结构、材料和控制方式实现了功能各异的太赫兹滤波器,但是考虑到设计的器件要应用到太赫兹系统中,成本低廉、结构简单、性能优越的太赫兹滤波器一直是研究人员的追求。分形概念自提出以来在很多研究领域都有了快速发展,但是在太赫兹波段的应用还不是很常见,特别是应用于太赫兹功能器件的设计。引入分形中科赫曲线的概念设计并制备了一种新型的太赫兹带通滤波器,该滤波器是在金属薄膜上刻蚀出科赫曲线分形结构,当太赫兹波垂直入射到该滤波器时候实现了在太赫兹波段的窄带滤波。在滤波器的设计过程中,追求理论与实验相结合,首先在电磁仿真软件中建立科赫曲线分形结构滤波器模型进行计算,探究分形结构应用于太赫兹波段进行滤波的可行性,在进行多次计算之后得到优化后的尺寸和结构,然后根据优化后的尺寸加工出科赫曲线分形结构太赫兹滤波器样品,并且将样品放在太赫兹时域光谱系统中进行实验测量,得到实验数据后与仿真结果进行比较。在仿真中利用了时域有限差分法模拟科赫曲线分形结构太赫兹带通滤波器的传输特性,优化后的仿真结果表明:滤波器的谐振频率为0.715 THz,透射系数能够达到0.92,-3 dB带宽为21.9 GHz,将仿真得到的散射参数进行S参数反演得到了太赫兹滤波器样品的电磁参数,这在理论上分析了太赫兹波在谐振点处产生透射增强的原因。利用飞秒激光微加工系统制备了尺寸优化后的科赫曲线分形结构太赫兹带通滤波器样品,然后使用太赫兹时域光谱系统对样品的传输特性进行测试,对实验得到的时域数据进行快速傅里叶变换之后得到频域数据,再把频域数据进行归一化处理后与之前的电磁仿真结果进行对比,发现实验测得的结果与电磁软件仿真得到的结果较为吻合。  相似文献   

5.
太赫兹时域光谱技术是一种在太赫兹频段内,广泛应用的光谱测量技术。这种技术可以用于许多物质的频谱分析,对于研究化学、半导体与生物分子等领域有着无可比拟的作用。然而用该系统进行样品探测时,受回波的影响频谱分辨率较低;受太赫兹波光斑大小以及待测样品与电磁波相互作用距离长短的影响,样品消耗量较多,并且整个系统的占用空间较大,这些局限性都限制了太赫兹时域光谱系统的进一步发展。为了突破太赫兹时域光谱系统的局限性,设计了一种将太赫兹泵浦区、探测区和传输波导集成到一个硅片上的太赫兹片上系统,该系统不仅能够解决上述系统的局限性,还能够省去样品测量前的光路准直环节,使样品的测量过程更加简便,同时集成化的系统也很大程度上提高了太赫兹波传输的稳定性。在太赫兹片上系统中,泵浦区和探测区的光电导天线是由低温砷化镓和金属电极制成,由于受到太赫兹片上系统的高度集成化和低温砷化镓晶体生长条件的限制,如何制备出低温砷化镓半导体薄膜衬底,并将其转移与键合,是太赫兹片上系统研制过程中的关键环节。首先利用分子束外延(MBE)技术制备出由半绝缘砷化镓、砷化镓缓冲层、砷化铝牺牲层和低温砷化镓层构成的外延片,然后利用盐酸溶液与砷化铝和低温砷化镓反应速度差别较大的原理,将200 nm厚的AlAs牺牲层腐蚀掉,从而得到2 μm厚的低温砷化镓薄膜。为了更加高效并且完整地得到低温砷化镓薄膜,研究了盐酸溶液在不同温度和不同浓度下与AlAs牺牲层的选择性腐蚀速率的关系。给出了低温砷化镓薄膜制备过程中盐酸的最佳体积比浓度和最佳温度,即在73 ℃下13.57%的盐酸溶液中进行砷化铝牺牲层的腐蚀。相比于已有工艺,这种腐蚀方法对实验设备的要求较低并且具有较高的安全性。最后,将单层低温砷化镓薄膜转移键合至硅片上,并制成光电导天线的结构。利用飞秒激光脉冲进行激发探测到太赫兹信号。由此说明,低温砷化镓薄膜的获取、转移与键合工艺能够满足芯片级太赫兹系统的制作要求,这为太赫兹片上系统的进一步研制打下了坚实的基础。  相似文献   

6.
太赫兹时域光谱技术是一种在太赫兹频段内,广泛应用的光谱测量技术。这种技术可以用于许多物质的频谱分析,对于研究化学、半导体与生物分子等领域有着无可比拟的作用。然而用该系统进行样品探测时,受回波的影响频谱分辨率较低;受太赫兹波光斑大小以及待测样品与电磁波相互作用距离长短的影响,样品消耗量较多,并且整个系统的占用空间较大,这些局限性都限制了太赫兹时域光谱系统的进一步发展。为了突破太赫兹时域光谱系统的局限性,设计了一种将太赫兹泵浦区、探测区和传输波导集成到一个硅片上的太赫兹片上系统,该系统不仅能够解决上述系统的局限性,还能够省去样品测量前的光路准直环节,使样品的测量过程更加简便,同时集成化的系统也很大程度上提高了太赫兹波传输的稳定性。在太赫兹片上系统中,泵浦区和探测区的光电导天线是由低温砷化镓和金属电极制成,由于受到太赫兹片上系统的高度集成化和低温砷化镓晶体生长条件的限制,如何制备出低温砷化镓半导体薄膜衬底,并将其转移与键合,是太赫兹片上系统研制过程中的关键环节。首先利用分子束外延(MBE)技术制备出由半绝缘砷化镓、砷化镓缓冲层、砷化铝牺牲层和低温砷化镓层构成的外延片,然后利用盐酸溶液与砷化铝和低温砷化镓反应速度差别较大的原理,将200 nm厚的AlAs牺牲层腐蚀掉,从而得到2μm厚的低温砷化镓薄膜。为了更加高效并且完整地得到低温砷化镓薄膜,研究了盐酸溶液在不同温度和不同浓度下与AlAs牺牲层的选择性腐蚀速率的关系。给出了低温砷化镓薄膜制备过程中盐酸的最佳体积比浓度和最佳温度,即在73℃下13.57%的盐酸溶液中进行砷化铝牺牲层的腐蚀。相比于已有工艺,这种腐蚀方法对实验设备的要求较低并且具有较高的安全性。最后,将单层低温砷化镓薄膜转移键合至硅片上,并制成光电导天线的结构。利用飞秒激光脉冲进行激发探测到太赫兹信号。由此说明,低温砷化镓薄膜的获取、转移与键合工艺能够满足芯片级太赫兹系统的制作要求,这为太赫兹片上系统的进一步研制打下了坚实的基础。  相似文献   

7.
采用飞秒激光激励光导开关能够产生脉宽皮秒甚至亚皮秒级的太赫兹脉冲,近年来,这项技术成为校准宽带示波器上升时间的有效手段。以低温生长砷化镓(LT-GaAs)为光导开关的基底,在飞秒激光激励下产生太赫兹脉冲,经共面波导传输,通过微波探针耦合为1.85mm同轴输出,然后利用带宽70GHz的取样示波器对其半幅度宽度进行测量。实验获得太赫兹脉冲的半幅度宽度(FWHM)约为7.4ps。  相似文献   

8.
针对太赫兹量子级联激光器光频梳射频信号提取与传输存在的阻抗不匹配问题,设计并提出了一种输入阻抗为20Ω、输出阻抗为50Ω的渐变微带线结构,研究了该结构的准TEM模电场分布,并根据S参数建立了相应的LC等效电路模型分析其物理机理。实验中,将渐变微带线结构应用于太赫兹量子级联激光器光频梳射频信号提取与测试,以验证渐变微带线传输射频信号效果,成功测量得到太赫兹量子级联激光器重复频率,其线宽为3.7 kHz,信噪比达到60 dB,在注入电流为700~900 mA范围内重复频率表现为稳定的单模信号,测量得到的最大保持和幅度艾伦方差结果同样表现出重复频率的稳定性。实验结果表明,所设计的渐变微带线具有良好的阻抗匹配效果,能够实现对太赫兹量子级联激光器光频梳射频信号稳定的提取和传输。  相似文献   

9.
李书磊  刘磊  高太长  黄威  胡帅 《物理学报》2016,65(13):134102-134102
太赫兹波长和典型卷云的冰晶粒子尺度处于同一量级,其在遥感卷云微物理参数(粒子尺度和冰水路径)方面具有广阔的应用前景.为了评估卷云微物理参数对太赫兹波传输特性的影响及其在太赫兹波段的敏感性,基于大气辐射传输模式分别模拟计算了晴空和有云条件下大气层顶的太赫兹辐射光谱特征,分析了这两种条件下辐射亮温差值的特点,研究了卷云冰晶粒子形状、粒子尺度及冰水路径对太赫兹辐射传输特性的影响,并定量计算了相关敏感系数.结果表明:卷云冰晶粒子形状、粒子尺度、冰水路径等对太赫兹波传输特性均有不同程度的影响,卷云效应也因通道频率而异,太赫兹波对卷云的粒子尺度和冰水路径有较高的敏感性,是理论上被动遥感卷云微物理特性的最佳波段.研究结果对于进一步发展太赫兹波被动遥感卷云技术、提高卷云参数的反演精度具有重要意义.  相似文献   

10.
作为一种新兴的方式,太赫兹时域光谱和成像已经被广泛应用到研究不同生物组织的光学特性。在空气等离子体处施加偏置电场对太赫兹波脉冲进行外差式相干检测(air-biased-coherent-detection,ABCD)的太赫兹系统具有超宽频带和可以在较远距离进行成像的优点,十分适用于对生物组织进行超宽谱研究,而对生物组织进行光谱测量通常需要基底材料。利用太赫兹ABCD系统对四种典型的基底材料(石英,高密度聚乙烯,聚四氟乙烯和石蜡)的光学参数进行测定,并计算其在1~15THz频率范围内的吸收系数和折射率。结果表明,高密度聚乙烯和石蜡可以很好的被用作生物组织超宽频带太赫兹光谱测量的基底材料。同时,虽然石英和聚四氟乙烯都是窄带(0.1~3THz)太赫兹系统中常用的基底材料,但是由于它们在高于5THz的频率范围内对太赫兹波具有较强的吸收,所以不能用作超宽频带太赫兹光谱测量的基底材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号