首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
By the use of a bosonization transformation and group-theoretical arguments, the Hamiltonian of an electron–hole–photon system in a laser-excited direct two-band semiconductor is transcribed into that of an exciton–photon system with the particle spins rigorously taken into consideration. It is shown that the third-order optical nonlinearities in the spectral region below the band edge have their microscopic origin in two-exciton correlations, which are expressed in terms of the effective exciton–exciton and anharmonic exciton–photon interactions. The dependence of the interparticle interactions on the spin states of quasiparticles is behind the polarization dependence of the semiconductor nonlinear optical response. On the example of the system of heavy hole excitons in quantum wells, grown from compounds with the zinc blende type of symmetry, it is demonstrated that the effective exciton–exciton interaction in two-exciton states with nonzero total spin is repulsive, while in zero-spin states it is attractive, which may result in the biexciton formation. The derived Heisenberg equations of motion for the exciton and biexciton operators form the basis for a theoretical study of the coherent four-wave-mixing in GaAs and ZnSe quantum wells. It is readily apparent from the equations that in different polarization configurations the coherent four-wave-mixing is generated by different ingredients of two-exciton Coulomb correlations: in the co-circular configuration, it is the interexciton repulsion, in the cross-linear configuration, the formation of the biexciton and its coupling to excitons, and in the collinear configuration, both of them jointly. The obtained expressions for the time-resolved and frequency-resolved four-wave-mixing signals adequately describe the main characteristics and various details of wave mixing phenomena, including a biexciton signature in the appropriate polarization configurations. Results of the work clarify the microscopic mechanism of the polarization dependence in coherent four-wave-mixing spectroscopy in semiconductor quantum wells.  相似文献   

2.
A. Henstra 《Molecular physics》2013,111(7):859-871
Nuclear orientation via electron spin locking (NOVEL) is a technique to orient nuclear spins embedded in a solid. Like other methods of dynamic nuclear polarization (DNP) it employs a small amount of unpaired electron spins and uses a microwave field to transfer the polarization of these unpaired electron spins to the nuclear spins. Traditional DNP uses CW microwave fields, but NOVEL uses pulsed electron spin resonance (ESR) techniques: a 90 degree pulse–90 degree phase shift–locking pulse sequence is applied and during the locking pulse the polarization transfer is assured by satisfying the Hartmann–Hahn condition. The transfer is coherent and similar to coherence transfer between nuclear spins. However, NOVEL requires an extension of the existing theory to many, inequivalent nuclear spins and to arbitrary, i.e. high electron and nuclear spin polarization. In this paper both extensions are presented. The theory is applied to the system naphthalene doped with pentacene, where the proton spins are polarized using the photo-excited triplet states of the pentacene molecules and found to show excellent agreement with the experimentally observed evolution of the polarization transfer during the locking pulse.  相似文献   

3.
The polarization of conduction electron spins due to an electrical current is observed in strained nonmagnetic semiconductors using static and time-resolved Faraday rotation. The density, lifetime, and orientation rate of the electrically polarized spins are characterized by a combination of optical and electrical methods. In addition, the dynamics of the current-induced spins are investigated by utilizing electrical pulses generated from a photoconductive switch. These results demonstrate the possibility of a spin source for semiconductor spintronic devices without the use of magnetic materials.  相似文献   

4.
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.  相似文献   

5.
A theoretical study was made of magnetic field-dependent dipolar relaxation in two- and three-spin systems. The results for the nuclear magnetic relaxation dispersion (NMRD) curves were compared with those for the simpler model of fluctuating local fields. For both models it was found that at low fields spins tend to relax with a common T 1-relaxation time. Sharp features in the NMRD curves coming from nuclear spin level anti-crossings are also predicted by both models. However, the simple model fails to describe the behavior of so-called long-lived spin states (LLS). We have studied the LLS as function of magnetic field and molecular geometry and simulated experimental results for the LLS in histidine amino acid obtained at the laboratory of Prof. H.-M. Vieth (Free University Berlin, Germany). In addition, we described polarization transfer in a three-spin system where two spins are protons, which are initially hyperpolarized by para-hydrogen induced polarization (PHIP), while the third spin is a spin ½ hetero-nucleus, which acquires polarization in the course of cross-relaxation.  相似文献   

6.
We apply the Stein–Chen method for Poisson approximation to spin-half Ising-type models in positive external field which satisfy the FKG inequality. In particular, we show that, provided the density of minus spins is low and can be expanded as a convergent power series in the activity (fugacity) variable, the distribution of minus spins is approximately Poisson. The error of the approximation is inversely proportional to the number of lattice sites (we obtain upper and lower bounds on the total variation distance between the exact distribution and its Poisson approximation). We illustrate these results by application to specific models, including the mean-field and nearest neighbor ferromagnetic Ising models.  相似文献   

7.
Analytical polarization and coherence transfer functions are presented for a spin system consisting of three dipolar coupled homonuclear spins under energy matched conditions. Based on these transfer functions, optimal durations of Hartmann–Hahn mixing periods can be determined for arbitrary dipolar coupling constants D12, D13, and D23. In addition, the dependence of the transfer efficiency on the relative size of the dipolar coupling constants is illustrated.  相似文献   

8.
In this work we demonstrate that low-field chemically induced dynamic nuclear polarization (CIDNP) is strongly affected by re-distribution of polarization, which is formed in the course of spin evolution in transient radical pairs, in diamagnetic reaction products. This phenomenon is of importance when the spins of the reaction product are coupled strongly meaning that spin–spin interactions between them are comparable to the differences in their Zeeman interactions with the external magnetic field. In this case, polarization transfer relies on a coherent mechanism; as a consequence, spins can acquire significant polarization even when they have no hyperfine coupling to the electron spins in the radical pairs, i.e., cannot be polarized directly by CIDNP. This is demonstrated by taking CIDNP of n-butylamine as an example: in this case only the α-CH2 protons are polarized directly, which is confirmed by high-field CIDNP, whereas the β-CH2, γ-CH2 and δ-CH3 protons get polarized only indirectly due to the transfer of polarization from the α-CH2 protons. These results show that low-field CIDNP data should be interpreted with care to discriminate between the effects of spin evolution in transient radical pairs and in diamagnetic reaction products.  相似文献   

9.
In a spin field effect transistor, a magnetic field is inevitably present in the channel because of the ferromagnetic source and drain contacts. This field causes random unwanted spin precession when carriers interact with non-magnetic impurities. The randomized spins lead to a large leakage current when the transistor is in the “off”-state, resulting in significant standby power dissipation. We can counter this effect of the magnetic field by engineering the Dresselhaus spin–orbit interaction in the channel with a backgate. For realistic device parameters, a nearly perfect cancellation is possible, which should result in a low leakage current.  相似文献   

10.
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号