首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
It is shown that the shear wave speed in a granular medium is less than that in an elastic solid of the same shear modulus-to-density ratio. Shear and compressional wave speeds are derived for granular media using a conservation of energy approach. The grains are assumed to be spherical with elastic Hertzian contacts of constant stiffness. The affine approximation is used to determine the relative displacements of grain centers, and it is also assumed that the grains are small compared to a wavelength, consistent with the effective medium approximation. Potential and kinetic energies associated with linear motion are the same as those in an elastic solid, but it is found that shear wave propagation in a granular medium involves additional energies associated with grain rotation. The partition of energies results in a reduction in the shear wave speed, relative to an elastic solid of the same shear modulus-to-density ratio. It is shown that the reduction is an inherent property of granular media, independent of any departure from the affine approximation or fluctuations in coordination number or contact stiffness. The predicted wave speed ratios are consistent with published measurements.  相似文献   

2.
The JKR contact theory is employed to study the adhesion phenomena between two solid materials in intimate contact. The elastic contact modulus and the work of adhesion of solid materials are obtained during adhesion tests by utilizing a micro force-deflection measuring apparatus. Six of the plastic materials, including polyethylene polyoxymethlene (POM), polyamide (PA), terephthalate (PET), polyvinyl chloride (PVC), polypropylene (PP), and ultra-high molecular weight polyethylene (UHMWPE) are used to evaluate the adhesion effect implied by the JKR theory. Comparison is made between surface energy obtained from the adhesion tests with that by a dynamic contact angle analyser.Results show that the load/deflection data in the loading phase are in good agreement with the predictions of JKR equation, and the experimental data of unloading phase deviate significantly from the JKR theory. The phenomena of adhesion hysteresis in loading tests are responsible for these results due to the effects of molecular reconstruction on solid surfaces in contact. The work of adhesions, and hence surface energies of plastic materials, calculated by the best fitting of JKR equation with the experimental data in the loading phase, agree satisfactorily in a comparable manner with that obtained using the contact angle analyser.  相似文献   

3.
A. Merkel  V. Tournat 《Ultrasonics》2010,50(2):133-138
An ordered structure of noncohesive spherical beads constitutes a phononic crystal. This type of media combines the properties of wave propagation in phononic crystals (dispersion due to the geometrical periodicity) with the properties of wave propagation in granular media (nonlinearities, rotational degree of freedom) and gives the opportunity to have interesting features as tunable frequency band gaps for example.In this work, the acoustic bulk modes of a hexagonal close packed (hcp) structure of beads, considered as rigid masses connected by springs, are theoretically evaluated and their associated resonance frequencies are compared to experimental results. When friction is neglected, the elastic interaction between the beads are reduced to a normal spring interaction given by the Hertz theory. According to this theory, the rigidity of the contact depends on its static loading. The theory predicts the existence of elastic transverse and longitudinal acoustical-type modes and transverse and longitudinal optical-type modes.The acoustic transfer function of a hcp crystal slab built with stainless steel beads is measured and its resonance frequencies are compared to the theoretical predictions. Despite some differences between theory and experiments, which could come for instance from the disordered character of the contact loads, the developed theory and the experimental results show relatively good agreement.  相似文献   

4.
The wall stresses and insert load in a two‐dimensional flat‐bottomed bin with a flow corrective insert were investigated. The static wall stress distributions produced by the granular solids were measured and compared with the theoretical prediction using the differential slice method. The variations in the dynamic wall stresses and the dynamic response of the insert load with time were obtained. The comparison of the experimental insert load to the theoretical prediction was demonstrated. In addition, the effect of the flow corrective insert upon the wall stress and insert load was investigated. As the insert half‐angle increases, the effect of disrupting the contact force network above the insert decreases, and the insert load produced by the granular solids increases. Employing the results obtained using stress measurements, the pulsation phenomena of wall stress and insert load in a bin with a triangle flow corrective insert may be further understood.  相似文献   

5.
Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.  相似文献   

6.
The crack tip loading conditions in impacted Izod-type specimens are investigated by means of the shadow optical method of caustics. The analysis for evaluating mode-II and mixed mode-I mode-II double caustics for optically anisotropic birefringent materials is developed to correct for erroneous solutions reported in the literature. The long time response of the specimen results in an almost undisturbed mode-I loading, as is expected from quasi-static considerations. In the early time range, however, superimposed mode-II loading conditions are observed; these result from the influences of dynamic wave propagation phenomena. The larger the crack and the nearer the impact point to the crack the larger these effects. Even changes in sign of the loading conditions are observed. Master curves and criteria are developed for establishing specific test conditions with Izod-type specimens leading either to practically pure mode-I conditions of loading or to well-defined controllable mixed mode-I mode-II loading conditions. The results are presented in the form of normalized parameters to allow for a transferability of the established data to any practical problems.  相似文献   

7.
We examine the network of forces to be expected in a static assembly of hard, frictionless spherical beads of random sizes, such as a colloidal glass. Such an assembly is minimally connected: the ratio of constraint equations to contact forces approaches unity for a large assembly. However, the bead positions in a finite subregion of the assembly are underdetermined. Thus to maintain equilibrium, half of the exterior contact forces are determined by the other half. We argue that the transmission of force may be regarded as unidirectional, in contrast to the transmission of force in an elastic material. Specializing to sequentially deposited beads, we show that forces on a given buried bead can be uniquely specified in terms of forces involving more recently added beads. We derive equations for the transmission of stress averaged over scales much larger than a single bead. This derivation requires the ansatz that statistical fluctuations of the forces are independent of fluctuations of the contact geometry. Under this ansatz, the d(d+1)/2-component stress field can be expressed in terms of a d-component vector field. The procedure may be generalized to nonsequential packings. In two dimensions, the stress propagates according to a wave equation, as postulated in recent work elsewhere. We demonstrate similar wave-like propagation in higher dimensions, assuming that the packing geometry has uniaxial symmetry. In macroscopic granular materials we argue that our approach may be useful even though grains have friction and are not packed sequentially.  相似文献   

8.
周志刚  宗谨  王文广  厚美瑛 《物理学报》2017,66(15):154502-154502
为了更好地理解颗粒间接触结构的变化对通过颗粒介质中的声波的影响,本文利用单轴压缩实验,通过一系列增加的轴向压力使样品塑性应变不断增大,这在颗粒尺度上对应于颗粒间接触结构的改变.我们测量了此过程中通过颗粒样品的声波变化,结果表明颗粒体系内接触结构的变化对声波波形中的非相干波部分和频率有明显的影响,并且在样品接触结构变化的初始阶段声速是偏离有效介质理论的预测的.  相似文献   

9.
Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.  相似文献   

10.
Mouraille O  Luding S 《Ultrasonics》2008,48(6-7):498-505
Dynamic simulations of wave propagation are performed in dense granular media with a narrow polydisperse size-distribution and a linear contact-force law. A small perturbation is created on one side of a static packing and its propagation, for both P- and S-waves, is examined. A size variation comparable to the typical contact deformation already changes sound propagation considerably. The transmission spectrum becomes discontinuous, i.e., a lower frequency band is transmitted well, while higher frequencies are not, possibly due to attenuation and scattering. This behaviour is qualitatively reproduced for (i) Hertz non-linear contacts, for (ii) frictional contacts, (iii) for a range of smaller amplitudes, or (iv) for larger systems. This proves that the observed wave propagation and dispersion behaviour is intrinsic and not just an artifact of (i) a linear model, (ii) a frictionless packing, (iii) a large amplitude non-linear wave, or (iv) a finite size effect.  相似文献   

11.
This paper is concerned with the effect of structural loading on dynamic performance. This topic is recognised as being of importance when validating finite element (FE) models with experimental data. A strategy for including axial load effects in a model updating procedure is developed. The method can be used to identify loading in structural frameworks using measured dynamic data.The effectiveness of the new method is demonstrated by means of case studies involving both simulated and experimental data. The theoretical study allows aspects of the sensitivity of the method to realistic levels of experimental noise to be studied as well as the way in which dynamic load identification can be enhanced with static measurements. The experimental case study proves the practical success of the technique. Updated axial load parameters are compared with static measurements of the same quantities.  相似文献   

12.
An unstructured adaptive mesh flow solver, a finite element structure solver and a moving mesh algorithm were implemented in the numerical simulation of the interaction between a shock wave and a structure. In the past, this interaction is mostly considered as one-way in the sense that the shock causes a transient load on the structure while it is reflected uneffected by the impact. A fully coupled approach was implemented in the present work which can account for the effects associated with a mutual interaction. This approach included a compressible flow Eulerian solver of second order accuracy in finite volume formulation for the fluid and a Langargian solver in finite element formulation for the solid structure. A novel implementation of advancing front moving mesh algorithm was made possible with the introduction of a flexible and efficient quad-edge data structure. Adaptive mesh refinement was introduced into the flow solver for improved accuracy as well. Numerical results are further validated by theoretical analysis, experimental data and results from other numerical simulations. Grid dependency study was performed and results showed that the physical phenomena and quantities were independent of the numerical grid chosen in the simulations. The results illuminated complicated flow phenomena and structure vibration patterns, which in order to be detected experimentally require capabilities beyond those of the current experimental techniques. The numerical simulations also successfully modelled the aero-acoustic damping effects on the structure, which do not exist in previous numerical models. Further analysis of the results showed that the mutual interaction is not linear and that the non-linearity arises because the wave propagation in the fluid is not linear and it cascades a non-linear and non-uniform loading on the plate. Non-linearity intensifies when the plate is vibrating at high frequency while the wave propagation speed is low.  相似文献   

13.
 为了研究冲击载荷作用下Soda lime玻璃材料中失效波的形成和传播,通过轻气炮加载平板撞击实验,采用双螺旋锰铜压阻传感器,在一发实验中同时测量4种不同厚度试件背面与有机玻璃背板间界面处的纵向应力时程曲线,根据测量结果得到试件中失效波的传播轨迹。通过改变碰撞速度,对不同加载条件下的失效波形成和传播规律进行了研究,结果表明,Soda lime玻璃材料在冲击作用下产生失效波所需的延迟时间随冲击载荷的增加而减小,失效波传播速度随冲击载荷的增加而增加。最后采用弹性微裂纹统计模型描述冲击载荷作用下Soda lime玻璃的破坏机制,并将模型嵌入LS-DYNA有限元程序中,模拟试件在不同加载条件下的平板碰撞,所得横向应力和自由面粒子速度曲线均可用于表征失效波破坏现象。根据数值模拟结果分析失效波的传播轨迹,与实验测量结果符合较好。  相似文献   

14.
Job S  Santibanez F  Tapia F  Melo F 《Ultrasonics》2008,48(6-7):506-514
A one-dimensional dry granular medium, a chain of beads which interact via the nonlinear Hertz potential, exhibits strongly nonlinear behaviors. When such an alignment further contains some fluid in the interstices between grains, it may exhibit new interesting features. We report some recent experiments, analysis and numerical simulations concerning nonlinear wave propagation in dry and wet chains of spheres. We consider first a monodisperse chain as a reference case. We then analyze how the pulse characteristics are modified in the presence of an interstitial viscous fluid. The fluid not only induces dissipation but also strongly affect the intergrain stiffness: in a wet chain, wave speed is enhanced and pulses are shorter. Simple experiments performed with a single sphere colliding a wall covered by a thin film of fluid confirm these observations. We demonstrate that even a very small amount of fluid can overcome the Hertzian potential and is responsible for a large increase of contact stiffness. Possible mechanisms for wet contact hardening are related to large fluid shear rate during fast elastohydrodynamic collision between grains.  相似文献   

15.
为分析在激光冲击波作用下AZ31B镁合金薄板背面的动态响应,采用聚偏氟乙烯贴片传感器与数字示波器对强激光诱导的冲击波进行测量,得到压电波形,结合冲击波的传播特性,对弹塑性双波的传播规律进行了研究。结果表明:激光诱导的材料动态响应是快速的;压电波形图反映出的弹性前驱波与塑性加载波传播到靶材背面的时间与理论时间相符;弹性前驱波能量小引发的波形振幅较小,紧随着的塑性加载波能量大并引起较大振幅波动,弹塑性双波卸载过程与紧接着的加载过程导致了压电信号的波动振幅提高。  相似文献   

16.
The paper introduces infrared thermography as a non-contact and non-destructive technique that conveniently offers the possibility of evaluating the energy-dissipating ability of soil, generally difficult to be determined using traditional techniques. It allows records and observations in real time of heat patterns produced by the dissipation of energy caused by friction between grains. Such dissipative heat occurs when soil is subjected to vibratory loading exceeding the characteristic threshold, and it evidences the distortion mechanism. This energy dissipation mechanism influences the wave propagation, intergranular attenuation, and dispersion through particles contacts. The infrared thermographic technique, which couples mechanical and thermal energy, offers the potential of directly monitoring the stress state of particle rearrangement and predicting the macroscopic mechanical response of soils subjected to cyclic, dynamic or vibratory loading. In addition, infrared thermography evidences the fuse effect of soil, capable to mitigate significantly the earthquake loading on engineering structures.  相似文献   

17.
The mechanism of dry granular convection within dense granular flows is mostly neglected by current analytical heat equations describing such materials, for example, in geophysical analyses of shear gouge layers of earthquake and landslide rupture planes. In dry granular materials, the common assumption is that conduction by contact overtakes any other mode of heat transfer. Conversely, we discover that transient correlated motion of heated grains can result in a convective heat flux normal to the shear direction up to 3-4 orders magnitude larger than by contact conduction. Such a thermal efficiency, much higher than that of water, is appealing and might be common to other microscopically structured fluids such as granular pastes, emulsions, and living cells.  相似文献   

18.
The effect of elastic loading on the velocity of propagation of acoustic waves in a solid is calculated (to the second order in the applied load). The results of the calculations and the experimental data on the effect of uniaxial loading on the propagation of ultrasonic waves in the bulk metallic glass Zr52.5Ti5Cu17.9Ni14.6Al10 are used to estimate the third-order and fourth-order elastic moduli.  相似文献   

19.
唐瀚玉  王娜  吴学邦  刘长松 《物理学报》2018,67(20):206402-206402
在恒温25 ℃剪切振动条件下,测量不同水分含量的NaCl湿颗粒体系的力学谱(能量耗散tanφ和剪切模量G).研究发现,随着剪切振幅增大,NaCl湿颗粒体系的剪切模量G和能量耗散tanφ都表现出类似于干颗粒体系的阻塞(Jamming)转变行为.随着体系中水含量的增大,湿颗粒体系的剪切模量G和能量耗散tanφ在质量分数约等于11%的临界水浓度下均出现一个峰值,且峰位与应变振幅无关,表明此时颗粒之间主要的作用力发生了变化.  相似文献   

20.
Conclusion Therefore, the analysis performed in the previous sections on the experimental data and results of modelling by the molecular dynamics method permits making a deduction on the possibility of the formation of strongly excited systems of noncrystallographic structural deformation levels during loading. As an experimental investigation showed, for all the kinds of static loading utilized their origination is associated with the pre-fracture stages. Crack propagation over the noncrystallographic interfacial boundaries of the fragments indicates this. Under shockwave loading the macroflux motion with the grains is also a new, larger-scale dynamic deformation level (compared with the dislocation level).Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 107–120, February, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号