首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel sulfonated poly(arylene ether nitrile) (SPEN) containing carboxylic acid group was successfully synthesized by direct aromatic nucleophilic substitution polycondensation of 2,6-difluorobenzonitrile (DFBN), potassium 2,5-dihydroxybenzenesulfonate (SHQ), phenolphthalin (PPL), and 4,4′-biphenol (BP). The expected chemical structure of copolymers was confirmed by using FTIR and 1H NMR. To balance the performance for PEM applications, the proportion of four different components were controlled. The influences of the carboxylic acid groups on the structure and properties of SPEN, including thermal and mechanical properties, oxidative stability, water uptake, swelling, proton conductivity, and methanol permeability, were investigated in detail. The results revealed that SPEN membranes containing nitrile and carboxylic acid groups could lead low water absorption, swelling, and methanol penetration. In such a way, efficient proton transport channels were constructed by the formation of the hydrogen bonds. The proton conductivity of SPEN with high sulfonation degree (DS >?0.6) was higher than 0.05 S/cm and increased with increasing temperature. Especially, the conductivity of SPEN-0.6 and SPEN-0.7 reached up to 0.157 and 0.267 S/cm at 80 °C, respectively. Meanwhile, SPEN membranes exhibit low methanol permeability (0.13 ×?10-6– 0.52 ×?10-6 cm2·s?1). Consequently, the highest selectivity of SPEN-0.6 reaches 2.02 ×?105 S·cm?3·s, which is about 4.5 times higher than that of Nafion 117 (0.45 ×?105 S·cm?3·s). All the data prove that this series of membranes exhibits excellent comprehensive performance and might have potential applications in direct methanol fuel cells.  相似文献   

2.
Biopolymer-based materials from renewable sources are the core target of the researchers in modern time. Following this motivation, we have developed solid polymer electrolytes (SPEs) from empty fruit branch (EFB) of oil palm. The cellulose was extracted from EFB and modified to carboxymethyl cellulose (CMC) by its reaction with monochloroacetic acid in a strongly alkaline medium. The samples were characterized by FTIR, 13C NMR, and XRD to confirm the presence of different functional groups, new connectivity, and crystalline/amorphous nature of the materials, respectively. The CMC-based SPEs were fabricated by blending it with different quantities of lithium iodide (LiI) as dopant. The existence of polymer-salt interactions was revealed by FTIR analysis. The maximum ionic conductivity of 5.58?×?10?3 S cm?1 was observed on sample containing 65 wt% LiI with the lowest activation energy of 0.249 eV.  相似文献   

3.
In order to reduce water uptake, swelling ratio, and methanol permeability in sulfonated proton exchange membranes (PEM), novel-sulfonated aromatic poly(ether ether nitrile)s-bearing pendant propenyl groups had been synthesized by direct copolymerization method. All the results showed that the propenyl groups were suitable cross-linkable groups, and that this method was an effective way to overcome the drawbacks of sulfonated polymers at high ion exchange capacity (IEC) values. By cross-linking, the water uptake, swelling ratio, and methanol diffusion could be restricted owing to the formation of compact network structure. For example, CSPEN-60 membranes showed the proton conductivity of 0.072 S cm?1 at 80 °C, while the swelling ratios and water uptake (17.9 and 60.7 %) were much lower than that of the SPEN-60 membrane (60.8 and 295.2 %). Meanwhile, a 1.1 × 10?7 cm2 s?1 of methanol diffusion was obtained which was much lower than that of Nafion 117 (14.1 × 10?7 cm2 s?1). Although the proton conductivity of the CSPEN-60 membranes is lower than that of the SPEN-60 membrane, the selectivity is much higher. The CSPEN-60 membrane exhibited the highest selectivity among the tested membranes, about 5.8 times higher compared with that of Nafion117.  相似文献   

4.
采用廉价的无机锆源(无水硝酸锆)通过一步法合成表面含强Lewis酸位的SO42-/Zr-SBA-15,该催化剂材料在废弃食用油和甲醇酯交换制生物柴油过程中表现出良好的催化活性和选择性. 实验考察了酯交换反应的最佳条件为:反应温度160 oC、反应时间12 h、催化剂Zr:Si为0.11、催化剂用量为10%、醇油比30:1. SO42-/Zr-SBA-15在最佳反应条件下可使甘油三酯的转化率达到92.3%,脂肪酸甲酯的产率为91.7%. SO42-/Zr-SBA-15具有高比表面积的介孔结构和表面酸性,且具有良好的反应稳定性和重复性,反应7次后的脂肪酸甲酯的产率仍稳定保持在74 ±1%.  相似文献   

5.
Suwen Wang  Lei Jin  Zhongfang Li 《Ionics》2013,19(7):1027-1036
Polymer composite membranes based on sulfonated poly(phthalazinone ether sulfone) (SPPES) and zirconium sulfophenyl phosphate (ZrSPP) were prepared. Three ZrSPP concentrations were used: 10, 20, and 30 wt%. The membranes were characterized by infrared spectroscopy (IR), X-ray diffraction spectroscopy, thermal gravimetric analysis, and scanning electron microscopy (SEM). The IR results indicated the formation of intense hydrogen bonds between ZrSPP and SPPES molecules. The SEM micrographs showed that ZrSPP well dispersed with SPPES and form a lattice structure. The proton conductivity of the SPPES (degree of sulfonation (DS) 64 %)/ZrSPP (10 wt%) composite membrane reached 0.39 S/cm at 120 °C 100 % relative humidity and that of the 30 wt% of SPPES (DS 16.1 %)/ZrSPP composite membrane reached 0.18 S/cm at 150 °C. The methanol permeabilities of the SPPES/ZrSPP composite membranes were in the range of 2.1?×?10?8 to 0.13?×?10?8?cm2/s, much lower than that of Nafion®117 (10?6?cm2/s). The composite membranes exhibited good thermal stabilities, proton conductivities, and good methanol resistance properties.  相似文献   

6.
Novel sulfonated poly (arylene ether nitrile) with pendant carboxylic group copolymers have been prepared as proton exchange membranes which were applied in direct methanol fuel cells (DMFCs). Compared with others, this work shows two main advantages: the crosslinked method is uncomplicated and the membranes were prepared via the hydroquinonesulfonic acid potassium salt (SHQ) as crosslinker mingled in sulfonated poly (arylene ether nitrile) (SPEN) to avoid the decrease of proton conductivity. The obtained crosslinked membranes exhibited improved dimensional stability; larger tensile strength than that of pure SPEN; and good thermal, mechanical properties. Furthermore, after crosslinking, the membranes had low methanol permeability values (0.78–3.4 × 10?7 cm2 s?1) and displayed good proton conductivities in the range of 0.0328–0.0385 S·cm?1 at room temperature. The sample of SPEN-SHQ-5 % showed highest selectivity value of 4.205 × 105 S·s cm?3, which was 11.9 times higher than that of Nafion 117. All of these results indicated that these membranes would be the potential candidates as proton exchange membranes (PEMs) in DMFCs.  相似文献   

7.
《光谱学快报》2013,46(5-6):515-529
A simple method has been developed for the determination of Chlorsulfuron in pesticide formulations by Fourier Transform Infrared (FTIR). Samples were diluted with CHCl3? , and the FTIR spectra of the samples and standards were obtained at a nominal resolution of 4 cm? 1 from 4000 to 900 cm? 1 with the accumulation of 25 scans. Chlorsulfuron determination was based on the measurement of peak area values from 1373 to 1363 cm? 1 which were corrected by use of a two points baseline defined from 1401 to 1302 cm? 1. The limit of detection achieved, which was of the order of 6 µg g? 1, was appropriate for the determination of Chlorsulfuron in commercially available formulations. FTIR results were statistically comparable with those found by High Performance Liquid Chromatography (HPLC). The procedure reduces organic solvent consumption per sample to less than 3 ml CHCl3, reduces waste generation and increases the sample measurement frequency up to 60 h? 1.  相似文献   

8.
Abstract

Two vibrational spectrometry–based methodologies were developed for procymidone determination in wettable powdered pesticide formulations. The Fourier‐transform infrared (FTIR) procedure was based on the selective extraction of procymidone by chloroform and determination by peak area measurement between 1451 and 1441 cm?1, using a baseline correction established between 1490 and 1410 cm?1, and a precision of 0.4% and a limit of detection of 0.01% w/w procymidone for a sample mass of 25 mg were obtained. For FT‐Raman determination, the selected conditions were peak area measurement between 1005 and 995 cm?1 Raman shift, with a baseline correction fixed between 1030 and 947 cm?1, and a relative standard deviation of 1% and a limit of detection of 0.8% procymidone in the original sample were obtained. The sample frequency for FTIR determination was 30 hr?1, lower than that for Raman with 40 hr?1. FT‐Raman reduces to the minimum the reagent consumption and waste generation, also avoiding the sample handling and contact of the operator with the pesticide. It can be concluded that the proposed methods are appropriate for quality control in commercial pesticide formulations.  相似文献   

9.
This paper describes the production of selenium sulfide (SeS2) crystalline thin film on commercial glass substrates, via chemical bath deposition. Transmittance, absorption, dielectric constant and refractive index of the produced films were investigated by UV/VIS Spectrum. It was found that changes occurred on the characteristics of the films and they were determined as a function of selenium sulfide concentration, which varied between 2?×?10?3 and 5?×?10?3 M. The structure of the film was analyzed using FTIR spectrum. The calculated refractive index values fell between 1.5 and 1.6, whereas the transmission ratio of the films was around 80–90%. Moreover, a peak in the reflectance was observed at 320–330 nm for all investigated samples. The highest dielectric constant for the films was obtained at the deposition concentration of 0.005 M. This study is believed to be useful for thin film production.  相似文献   

10.
Solid biopolymers have gained much attention in the development of polymer electrolytes due to its biocompatibility, film-forming nature, and non-toxicity. In the present work, biopolymer membrane has been prepared using tamarind seed polysaccharide (TSP) as host polymer and various concentrations of lithium chloride (LiCl) salt as dopant by solution casting technique. The prepared biopolymer electrolyte has been characterized by XRD, FTIR, differential scanning calorimetry (DSC) analysis, AC impedance spectroscopy analysis, and transference number measurement. XRD analysis has been done to investigate the amorphous/crystalline nature of the polymer membrane. The highest amorphous nature has been found for 1 g of TSP with 0.4 g LiCl. FTIR spectrum analysis confirms the complex formation between TSP biopolymer with LiCl. From AC impedance conductivity analysis, the maximum ionic conductivity is of the order of 6.7?×?10?3 S cm?1 at room temperature for 1 g TSP with 0.4 g LiCl, whereas for pure TSP biopolymer membrane, the ionic conductivity is of the order of 5.48?×?10?7 S cm?1. The glass transition temperature for the highest conducting biopolymer membrane for the composition of 1 g TSP: 0.4 g LiCl has been found to be 44.25 °C using the DSC technique. Employing the maximum conducting biopolymer membrane, a lithium-ion conducting battery has been fabricated and its discharge characteristics have been studied.  相似文献   

11.
Organic/inorganic composite membranes were prepared using sulfonated poly(vinyl alcohol) (SPVA), mixed and cross-linked with different amounts of poly(vinyl alcohol)-grafted graphene oxide (PVA-g-GO). The introduction of PVA-g-GO to the membranes not only reduced the methanol permeability but also positively affected the mechanical properties: Increasing the PVA-g-GO content increased the blocking effect of GO. The PVA-g-GO/SPVA membranes were cross-linked with glutaraldehyde, resulting in the formation of cross-linking chains within the matrix, as well as between the matrix and the filler. Therefore, the microstructure of the PVA-g-GO/SPVA cross-linking membrane was different from that of the existing membranes. This structure also reduced the methanol permeability. The composite membranes exhibited proton conductivities ranging from 0.0141 to 0.0319 S/cm at 60 °C, and low methanol permeability ranging from 3.13?×?10?7 to 1.53?×?10?7 cm2 s?1 at 25 °C.  相似文献   

12.
The present study investigates the ion transport properties and structural analysis of plasticized solid polymer electrolytes (SPEs) based on carboxymethyl cellulose (CMC)-NH4Br-PEG. The SPE system was successfully prepared via solution casting and has been characterized by using electrical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy, and x-ray diffraction (XRD) technique. The highest conductivity of the SPE system at ambient temperature (303 K) was found to be 1.12?×?10?4 S/cm for un-plasticized sample and 2.48?×?10?3 S cm?1 when the sample is plasticized with 8 wt% PEG. Based on FTIR analysis, it shows that interaction had occurred at O–H, C=O, and C–O moiety from CMC when PEG content was added. The ionic conductivity tabulation of SPE system was found to be influenced by transport properties and amorphous characteristics as revealed by IR deconvolution method and XRD analysis.  相似文献   

13.
To determine the effect of electrolyte salts on the cycling properties of tin anodes in sodium ion batteries, sodium/tin cells were prepared using eight electrolytes containing NaCF3SO3, NaBF4, NaClO4, and NaPF6 in ethylene carbonate-dimethyl carbonate (EC-DMC) and EC-DMC/fluoroethylene carbonate (FEC) solvents. The first charge capacity and cycling properties strongly depended on the electrolyte salts. Additionally, an appropriately chosen electrolyte salt in combination with the FEC additive improved the cycling properties of the tin electrode. The tin electrode in the presence of the FEC-containing NaPF6-based electrolyte exhibited the best cycling properties. The first charge capacity and charge capacity after the 45th cycle were 220 and 189 mAh g?1 electrode, respectively at a current density of 84.7 mA g?1 electrode. The rate performance is also studied using the optimized electrolyte which reveals the ability of the electrode to perform in high current application. At a high current density of 4235 mA g?1 electrode, the capacity delivered is 24 mAh g?1 electrode. At a current rate of 1694 mA g?1 electrode, at the end of 1400th cycle, capacity is about 45 mAh g?1 electrode. The results of the study clearly indicate that the electrolyte salts critically affect the electrochemical performance of the tin anode in sodium ion batteries.  相似文献   

14.
ABSTRACT

Arsenic is a toxic heavy metal that occurs naturally in water, soil, and air. It is widespread in the environment as a consequence of both anthropogenic and natural processes. In the current study, an attempt has been made to analyze the arsenic-induced molecular changes in macromolecular components like proteins and lipids in the kidney tissues of edible fish Labeo rohita using Fourier transform infrared (FTIR) spectroscopy. The FTIR spectrum of kidney tissue is quite complex and contains several bands arising from the contribution of different functional groups. The detailed spectral analyses were performed in three distinct wave number regions, namely 3600–3050 cm?1, 3050–2800 cm?1, and 1800–800 cm?1. The current study shows that the kidney tissues are more vulnerable to arsenic intoxication. FTIR spectra reveal significant differences in both absorbance intensities and areas between control and arsenic-intoxicated kidney tissues; this result indicates that arsenic intoxication induces significant alteration on the major biochemical constituents such as lipids and proteins and leads to compositional and structural changes in kidney tissues at the molecular level. The current study confirms that FTIR spectroscopy can be successfully applied to toxicologic and biological studies.  相似文献   

15.
Sulfonated polybenzimidazole-polyimide block copolymers are synthesized through condensation polymerization at high temperature. The length of the polyimide chain is varied to give a series of block copolymers with various block lengths. The as-synthesized block polymers are used to prepare the corresponding membranes through the solvent evaporation method. The structure of the block copolymers is characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). Their mechanical strength, thermal behavior, water uptake, swelling ratio, and proton conductivity, as well as oxidative stability are also investigated. All the block copolymers exhibit good thermal stability, dimensional stability, mechanical strength, and proton conductivity. Compared to the random sulfonated polyimide-containing benzimidazole membranes with the same degree of sulfonation, the membranes prepared from the block copolymers show higher proton conductivities. The proton conductivities of the block copolymer membranes range from 6.2?×?10?4 to 1.1?×?10?2?S cm?1 at 105 °C. The block copolymer membrane doped with phosphoric acid exhibits proton conductivity higher than 0.2 S cm?1 at 160 °C, indicating its potential applications in proton exchange membrane fuel cells operated under high temperature and low humidity conditions.  相似文献   

16.
We report a polycrystalline NaFeTiO4 prepared via conventional solid-state reaction route. X-ray diffraction (XRD) results and Rietveld refinement confirmed single-phase NaFeTiO4 having an orthorhombic unit cell with lattice parameters a = 9.17051 Å, b = 2.96310 Å, and c = 10.73676 Å and Pnma space group (No. 62). Energy dispersive spectrum (EDS) yielded sample stoichiometry that agrees well with its molecular formula. The surface morphology indicated a cylindrical rod-like microstructure comprising well-defined grains having variable dimension, i.e., diameter ~?250 to 350 nm and length ~?1 to 5 μm. Vibrational spectroscopy (FTIR/Raman) results indicated presence of FeO6 and TiO6 octahedra in good agreement with crystallographic study. Brunner-Emmet-Teller (BET) surface area measurement yielded a specific surface area as high as ~?4.28 m2 g?1. Electrical impedance spectrum indicated presence of grains separated by well-defined grain boundaries in agreement with microstructural analysis. Electrical conductivity of the material was estimated to be ~?6.05 × 10?6 S cm?1. The structural model obtained using XRD and vibrational spectrum results suggest layered tunnel/cage structure of cage dimension ~?4.65 Å, along [010] direction in the xz plane, which is larger than the size of Na+ ion (0.98 Å). So, easier Na+ migration feasibility exists in NaFeTiO4 crystal lattice making it a good candidate for electrode applications.  相似文献   

17.
Abstract

An inductively coupled plasma mass spectrometer method for estimating trace elements in tree nut oils has been developed which employs microwave digestion equipped with high pressure subassembly. Residual carbon content and residual acidity were determined to evaluate the efficiency of digestion. The best digestion efficiency was obtained using Easyprep? system with 0.5?g of oil, 4?mL concentrated nitric acid, and 2?mL hydrogen peroxide, and a final temperature of 235?°C. Residual carbon content and residual acidity were estimated as 1.7% (corresponding to 852?mg L?1 of carbon in sample solution) and 7.5%, respectively, and recovery values ranged from 90.7% to 107.7%. Whereas, only 0.2?g of oil could be digested through conventional microwave system with 5?mL concentrated nitric acid and 2?mL hydrogen peroxide at 205?°C (residual carbon content?=?3.2%). The developed method has been applied to determine nine trace elements (Cr, Mn, Fe, Ni, Cu, As, Zn, Cd, and Pb) in different categories of tree nut oils, and high content of Fe, Mn, and Zn were found in some of those oils. To the best of our knowledge, the present investigation is the first attempt to analyze trace elements in different categories of tree nut oils consumed in China.  相似文献   

18.
This work examines the effect of lithium trifluoromethanesulfonate (LiCF3SO3) and glycerol on the conductivity and dielectric properties of potato starch-chitosan blend-based electrolytes. The electrolytes are prepared via solution cast technique. From X-ray diffraction (XRD) analysis, the blend of 50 wt.% starch and 50 wt.% chitosan is found to be the most amorphous blend. Fourier transform infrared (FTIR) spectroscopy studies show the interaction between the electrolyte materials. The room temperature conductivity of pure starch-chitosan film is found to be (2.85 ± 1.31) × 10?10 S cm?1. The incorporation of 45 wt.% LiCF3SO3 increases the conductivity to (7.65 ± 2.27) × 10?5 S cm?1. Further conductivity enhancement up to (1.32 ± 0.35) × 10?3 S cm?1 has been observed on addition of 30 wt.% glycerol. This trend in conductivity is verified by XRD and dielectric analysis. The temperature dependence of conductivity of all electrolytes are Arrhenian.  相似文献   

19.
Lithium ion conducting polymer electrolytes based on triblock polymer P(VdCl-co-AN-co-MMA)–LiCl were prepared using a solution casting technique. XRD studies show that the amorphous nature of the polymer electrolyte has been increased due to the addition of LiCl. The maximum amorphous nature has been observed for 40 m% P(VdCl-co-AN-co-MMA)/60 m% LiCl samples. The FTIR study of the lithium ion conducting polymer membrane confirms the complex formation between the polymer P(VdCl-co-AN-co-MMA) and LiCl. The lithium ion conductivity is found to be 1.6 × 10?5 Scm?1 for the 40 m% P(VdCl-co-AN-co-MMA)/60 m% LiCl sample at room temperature. This value is found to be greater than that of pure polymer whose conductivity is found to be 1.5 × 10?8 Scm?1. To improve ionic conductivity, ethylene carbonate has been added as a plasticizer to the 40 m% P(VdCl-co-AN-co-MMA)/60 m% LiCl sample. When we add 0.6 m% of ethylene carbonate, it has been observed that the lithium ion conductivity has increased to 1.3 × 10?3 Scm ?1 . This value is two orders of magnitude greater than the 40 m% P(VdCl-co-AN-co-MMA)/60 m% LiCl sample. It is also observed from XRD patterns of 40 m% P(VdCl-co-AN-co-MMA)/60 m % LiCl/0.6 m % EC that the amorphous nature has been increased further. A dielectric study has been performed for the above membranes.  相似文献   

20.
A series of gel polymer electrolytes (GPEs) containing lithium bis(oxalato)borate (LiBOB), propylene carbonate (PC), and ethylene carbonate (EC) have been investigated. Poly(ethylene oxide) (PEO) was used as the polymer. First, a series of liquid electrolytes was prepared by varying the Li:O ratio and obtained the best composition giving the highest conductivity of 7.1?×?10?3 S cm?1 at room temperature. Then, the PEO-based GPEs were prepared by adding different amounts of LiBOB and PEO into a mixture of equal weights of EC and PC (40 % of each from the total weight). The gel electrolyte comprises of 12.5 % of LiBOB, 7.5 % of PEO, 40 % of EC, and 40 % of PC gave the highest ionic conductivity of 5.8?×?10?3 S cm?1 at room temperature. From the DC polarization measurements, ionic nature of the gel electrolyte was confirmed. Fourier transform infrared (FTIR) spectra of electrolytes showed the Li+ ion coordination with EC and PC molecules. These interactions were exhibited in the peaks corresponding to ring breathing of EC at 893 cm?1 and ring bending of EC and symmetric ring deformation of PC at 712 and 716 cm?1 respectively. The presence of free Li+ ions and ion aggregates is evident in the peaks due to the symmetric stretching of O–B–O at 985 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号