首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
2.
High-order methods that can resolve interactions of flow-disturbances with shock waves are critical for reliable numerical simulation of shock wave and turbulence interaction. Such problems are not well understood due to the limitations of numerical methods. Most of the popular shock-capturing methods are only first-order accurate at the shock and may incur spurious numerical oscillations near the shock. Shock-fitting algorithms have been proposed as an alternative which can achieve uniform high-order accuracy and can avoid possible spurious oscillations incurred in shock-capturing methods by treating shocks as sharp interfaces. We explore two ways for shock-fitting: conventional moving grid set-up and a new fixed grid set-up with front tracking. In the conventional shock-fitting method, a moving grid is fitted to the shock whereas in the newly developed fixed grid set-up the shock front is tracked using Lagrangian points and is free to move across the underlying fixed grid. Different implementations of shock-fitting methods have been published in the literature. However, uniform high-order accuracy of various shock-fitting methods has not been systematically established. In this paper, we carry out a rigorous grid-convergence analysis on different variations of shock-fitting methods with both moving and fixed grids. These shock-fitting methods consist of different combinations of numerical methods for computing flow away from the shock and those for computing the shock movement. Specifically, we consider fifth-order upwind finite-difference scheme and shock-capturing WENO schemes with conventional shock-fitting and show that a fifth-order convergence is indeed achieved for a canonical one-dimensional shock-entropy wave interaction problem. We also show that the method of finding shock velocity from one characteristic relation and Rankine–Hugoniot jump condition performs better than the other methods of computing shock velocities. A high-order front-tracking implementation of shock-fitting is also presented in this paper and nominal rate of convergence is shown. The front-tracking results are validated by comparing to results from the conventional shock-fitting method and a linear-interaction analysis for a two-dimensional shock disturbance interaction problem.  相似文献   

3.
The simulation of sound generating flows in complex geometries requires accurate numerical methods that are non-dissipative and stable, and well-posed boundary conditions. A structured mesh approach is often desired for a higher-order discretization that better uses the provided grids, but at the expense of complex geometry capabilities relative to techniques for unstructured grids. One solution is to use an overset mesh-based discretization where locally structured meshes are globally assembled in an unstructured manner. This article discusses recent advancements in overset methods, also called Chimera methods, concerning boundary conditions, parallel methods for overset grid management, and stable and accurate interpolation between the grids. Several examples are given, some of which include moving grids.  相似文献   

4.
Higher order discretization has not been widely successful in industrial applications to compressible flow simulation. Among several reasons for this, one may identify the lack of tailor-suited, best-practice relaxation techniques that compare favorably to highly tuned lower order methods, such as finite-volume schemes. In this paper we investigate solution algorithms in conjunction with high-order Spectral Difference discretization for the Euler equations, using such techniques as multigrid and matrix-free implicit relaxation methods. In particular we present a novel hybrid multilevel relaxation method that combines (optionally matrix-free) implicit relaxation techniques with explicit multistage smoothing using geometric multigrid. Furthermore, we discuss efficient implementation of these concepts using such tools as automatic differentiation.  相似文献   

5.
This paper describes the implementation of immersed boundary method using the direct-forcing concept to investigate complex shock–obstacle interactions. An interpolation algorithm is developed for more stable boundary conditions with easier implementation procedure. The values of the fluid variables at the embedded ghost-cells are obtained using a local quadratic scheme which involves the neighboring fluid nodes. Detailed discussions of the method are presented on the interpolation of flow variables, direct-forcing of ghost cells, resolution of immersed-boundary points and internal treatment. The method is then applied to a high-order WENO scheme to simulate the complex fluid–solid interactions. The developed solver is first validated against the theoretical solutions of supersonic flow past triangular prism and circular cylinder. Simulated results for test cases with moving shocks are further compared with the previous experimental results of literature in terms of triple-point trajectory and vortex evolution. Excellent agreement is obtained showing the accuracy and the capability of the proposed method for solving complex strong-shock/obstacle interactions for both stationary and moving shock waves.  相似文献   

6.
One of the challenges in numerical simulation of wave–turbulence interaction is the precise setup and maintenance of wave and turbulence fields. In this paper, we investigate techniques for the generation and suppression of specific surface wave modes, the generation of turbulence in an inhomogeneous physical domain with a wavy boundary-fitted grid, and the generation and maintenance of waves and turbulence during the complex wave–turbulence interaction process. We apply surface pressure to generate and suppress waves. Based on the solution of linearized Cauchy–Poisson problem, we derive three pressure expressions, which lead to a δ-function method, a time-segment method, and a gradual method. Numerical experiments show that these methods generate waves as specified and eliminate spurious waves effectively. The nonlinear wave effect is accounted for with a time-relaxation method. For turbulence generation, we extend the linear forcing method to an inhomogeneous physical domain with a curvilinear computational grid. Effects of force distribution and computational grid distortion are examined. For wave–turbulence interaction, we develop an algorithm to instantaneously identify specific progressive and standing waves. To precisely control the wave amplitude in a complex turbulent flow field, we further develop an energy controlling method. Finally, a simulation example of wave–turbulence interaction is presented. Results show that turbulence has unique features in the presence of waves. Velocity fluctuations are found to be strongly dependent on the wave phase; variations of these fluctuations are explained by the pressure–strain correlation associated with the wave-induced strain field.  相似文献   

7.
COGENT is an Eulerian gyrokinetic code being developed for edge plasma modelling. The code is distinguished by the use of a high-order finite-volume (conservative) discretization combined with mapped multi-block grid technology. Our recent work is focused on the development of a 5D full-F COGENT version. A numerical algorithm utilizing locally a field-aligned multi-block coordinate system is implemented to facilitate simulations of highly anisotropic microturbulence in the presence of a strong magnetic shear. In this approach, the toroidal direction is divided into blocks such that, within each block, the cells are field-aligned and a non-matching (non-conformal) grid interface is allowed at the block boundaries. Here we report on details of the numerical implementation and present preliminary results of verification studies performed for the case of the ion temperature gradient (ITG) instability in a sheared toroidal annulus geometry.  相似文献   

8.
An unstructured finite-volume method for direct and large-eddy simulations of scalar transport in complex geometries is presented and investigated. The numerical technique is based on a three-level fully implicit time advancement scheme and central spatial interpolation operators. The scalar variable at cell faces is obtained by a symmetric central interpolation scheme, which is formally first-order accurate, or by further employing a high-order correction term which leads to formal second-order accuracy irrespective of the underlying grid. In this framework, deferred-correction and slope-limiter techniques are introduced in order to avoid numerical instabilities in the resulting algebraic transport equation. The accuracy and robustness of the code are initially evaluated by means of basic numerical experiments where the flow field is assigned a priori. A direct numerical simulation of turbulent scalar transport in a channel flow is finally performed to validate the numerical technique against a numerical dataset established by a spectral method. In spite of the linear character of the scalar transport equation, the computed statistics and spectra of the scalar field are found to be significantly affected by the spectral-properties of interpolation schemes. Although the results show an improved spectral-resolution and greater spatial-accuracy for the high-order operator in the analysis of basic scalar transport problems, the low-order central scheme is found superior for high-fidelity simulations of turbulent scalar transport.  相似文献   

9.
In this work, the local grid refinement procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating unsteady viscous incompressible flows with complex immersed boundaries. A finite-volume formulation based on globally second-order accurate central-difference schemes is adopted here in conjunction with a two-step fractional-step procedure. The key aspects that needed to be considered in developing such a nested grid solver are proper imposition of interface conditions on the nested-block boundaries, and accurate discretization of the governing equations in cells that are with block-interface as a control-surface. The interpolation procedure adopted in the study allows systematic development of a discretization scheme that preserves global second-order spatial accuracy of the underlying solver, and as a result high efficiency/accuracy nested grid discretization method is developed. Herein the proposed nested grid method has been widely tested through effective simulation of four different classes of unsteady incompressible viscous flows, thereby demonstrating its performance in the solution of various complex flow–structure interactions. The numerical examples include a lid-driven cavity flow and Pearson vortex problems, flow past a circular cylinder symmetrically installed in a channel, flow past an elliptic cylinder at an angle of attack, and flow past two tandem circular cylinders of unequal diameters. For the numerical simulations of flows past bluff bodies an immersed boundary (IB) method has been implemented in which the solid object is represented by a distributed body force in the Navier–Stokes equations. The main advantages of the implemented immersed boundary method are that the simulations could be performed on a regular Cartesian grid and applied to multiple nested-block (Cartesian) structured grids without any difficulty. Through the numerical experiments the strength of the solver in effectively/accurately simulating various complex flows past different forms of immersed boundaries is extensively demonstrated, in which the nested Cartesian grid method was suitably combined together with the fractional-step algorithm to speed up the solution procedure.  相似文献   

10.
We present a new method for construction of high-order parametrizations of surfaces: starting from point clouds, the method we propose can be used to produce full surface parametrizations (by sets of local charts, each one representing a large surface patch – which, typically, contains thousands of the points in the original point-cloud) for complex surfaces of scientific and engineering relevance. The proposed approach accurately renders both smooth and non-smooth portions of a surface: it yields super-algebraically convergent Fourier series approximations to a given surface up to and including all points of geometric singularity, such as corners, edges, conical points, etc. In view of their C smoothness (except at true geometric singularities) and their properties of high-order approximation, the surfaces produced by this method are suitable for use in conjunction with high-order numerical methods for boundary value problems in domains with complex boundaries, including PDE solvers, integral equation solvers, etc. Our approach is based on a very simple concept: use of Fourier analysis to continue smooth portions of a piecewise smooth function into new functions which, defined on larger domains, are both smooth and periodic. The “continuation functions” arising from a function f converge super-algebraically to f in its domain of definition as discretizations are refined. We demonstrate the capabilities of the proposed approach for a number of surfaces of engineering relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号