首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
During high power CO2 laser beam welding, the plasma above the keyhole has a shielding effect that it not only absorbs part of the laser energy but also defocuses the laser beam. As a result, the welding efficiency and the aspect ratio of the welds are influenced. In order to reduce the effect of plasma, helium as a plasma control gas has been used successfully and effectively. However, the cost of helium in Southeast Asia is extremely high and therefore the production cost is significantly increased when helium is used as a continuous bleeding plasma control gas. To search for an alternative plasma control technique, feasibility in using magnetic effect as a control tool is explored in this paper. The influences of the magnetic field strength, laser power, welding speed, field direction and shielding gas (e.g. helium and argon) on the penetration depth and the width of bead were also investigated. Experimental results indicated that the magnetic field can influence the shielding effect of the plasma without using plasma control gas. It was found that at a suitable magnetic field strength the penetration depth was increased by about 7%, but no significant difference on the width of bead was found. Moreover, it was shown that the plasma control effect can be achieved at low magnetic field strength and the penetration depth can be increased significantly under argon atmosphere.  相似文献   

2.
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of γ-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al γ′ phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility.  相似文献   

3.
The plasma plume induced during laser welding of metals is a mixture of metal vapour, coming from the vaporised weld pool surface and shielding gas. The influence of the shielding gas on the welded joints quality is not yet well understood and very few investigations, to the best of our knowledge, were addressed to study its role in case of welding of aluminium–magnesium alloys. In this paper we present a study of the dynamics of plasma plume produced in laser welding of 5xxx aluminium alloys by means of correlation spectroscopy. By our results we can correlate the influence of the welding speed, in case of ineffective gas shielding, to the loss of alloying elements. Finally, the results obtained are consistent with the EDX analysis performed in post-processing on the welded joints.  相似文献   

4.
In laser welding, the shielding gas is commonly used to stabilize the welding process, to improve welded joints features and to protect the welded seam against oxidization. Besides the type of shielding gas used, the nozzle parameters play an essential role. In fact, the chemical composition of the shielding gas and the flow geometry are key factors limiting the size of the plasma plume and its contamination by the surrounding atmosphere, and affecting the final quality of the welded joints.In this work, we present an experimental study on the complex physical phenomena occurring during the interaction between the plasma plume, the laser beam and the shielding gas by using an in-process spectroscopic investigation of the plasma plume characteristics under different operating conditions. A correlation was found between the spectral features and the formation of oxide layers on the surface of the welding seam, caused by defective gas shielding and by the vaporization of alloying elements. Experimental results have given useful indications for the development of innovative welding nozzle for application in laser welding of aluminium alloys.  相似文献   

5.
This paper presents a study carried out on 3.5 kW cooled slab laser welding of 904 L super austenitic stainless steel. The joints have butts welded with different shielding gases, namely argon, helium and nitrogen, at a constant flow rate. Super austenitic stainless steel (SASS) normally contains high amount of Mo, Cr, Ni, N and Mn. The mechanical properties are controlled to obtain good welded joints. The quality of the joint is evaluated by studying the features of weld bead geometry, such as bead width (BW) and depth of penetration (DOP). In this paper, the tensile strength and bead profiles (BW and DOP) of laser welded butt joints made of AISI 904 L SASS are investigated. The Taguchi approach is used as a statistical design of experiment (DOE) technique for optimizing the selected welding parameters. Grey relational analysis and the desirability approach are applied to optimize the input parameters by considering multiple output variables simultaneously. Confirmation experiments have also been conducted for both of the analyses to validate the optimized parameters.  相似文献   

6.
Research on laser welding of vehicle body   总被引:3,自引:0,他引:3  
Based on many experiments of CO2 laser welding of vehicle body, joint microstructure and stress–strain curve of specimen are analyzed. The deep punching performance acquired by adopting Ar as protective gas is better than that of the one acquired by adopting N2 as protective gas. Meanwhile the percentage of zinc in welding seam can be effectively controlled by means of blowing side protective gas. In this paper, welding penetration and width are shown to vary with laser power and speed of welding. The results indicate that some flaws such as gas hole, crack and softening of HAZ do not appear in laser welding seam in sheet steel of automobile bodies if technology parameters optimizes. The deep punching performance of tailor-welding sheet is fine.  相似文献   

7.
High power fibre lasers have recently received much attention because of their inherent advantages such as high output power, high beam quality, compact size, and flexible fibre delivery. Studies on the mechanism behind fibre laser welding systems may further promote their practical application. In this paper, high speed video observations were used to study the characteristics of the plasma/vapour induced during the bead-on-plate welding of ZL114 using a high power CW fibre laser. We also analysed the cause of the periodic oscillation of the plasma/vapour. The results revealed that plasma/vapour induced from high power lasers oscillate periodically at 450–600 μs cycles above the weld pool surface. The use of a shielding gas has little effect on the oscillation cycle. The plasma/vapour absorption is not the main reason for the periodical oscillation of plasma/vapour induced during fibre laser welding. The periodic oscillation of the plasma/vapour can be attributed to the oscillation of the keyhole.  相似文献   

8.
Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box–Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2–2.2 kW), welding speed (40–50 mm/s) and focus position (?1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.  相似文献   

9.
This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.  相似文献   

10.
This study is concerned with the effects of laser and arc arrangement on weld integrity for the hybrid laser arc welding processes. Experiments were conducted for a high-strength steel using a 4 kW Nd: YAG laser and a metal active gas (MAG) welding facility under two configurations of arc–laser hybrid welding (ALHW) and laser–arc hybrid welding (LAHW). Metallographic analysis and mechanical testing were performed to evaluate the weld integrity in terms of weld bead geometry, microstructure and mechanical properties. The morphology of the weld bead cross-section was studied and the typical macrostructure of the weld beads appeared to be cone-shaped and cocktail cup-shaped under ALHW and LAHW configurations, respectively. The weld integrity attributes of microstructure, phase constituents and microhardness were analyzed for different weld regions. The tensile and impact tests were performed and fracture surface morphology was analyzed by scanning electron microscope. The study showed that ALHW produced joints with a better weld shape and a more uniform microstructure of lath martensite, while LAHW weld had a heterogeneous structure of lath martensite and austenite.  相似文献   

11.
This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.  相似文献   

12.
For the packaging of a pump laser in butterfly package, the most crucial assembly step is the fiber-to-laser diode coupling and attachment. The use of laser welding as the joining method offers several advantages if compared with the adhesive joints: strong joining strength, short process time and less contamination. This paper reports on laser welding process characteristics; weld strength and its fracture mode. The penetration depth and melt area of laser spot welds were found to be complicated functions of laser pulse energy, intensity, and beam diameter. Effects of pulse width, input power and size of the focal spot on the rate of energy input to the workpieces and consequently, the weld strength were reported. The weld strength was found to be dependent on the overlapping area between the two joining materials. Surface roughness, Ra, has influence on the fraction of energy absorbed, A, and therefore, affecting the penetration depth. Thermal analysis was carried out on the laser-welded joints and its heat-affected zone (HAZ) induced by various power densities was examined. These data are important in order to optimize and utilize the laser welding process as an effective manufacturing tool for fabrication of reliable pump laser.  相似文献   

13.
In this work thin sheets of Ti–6Al–4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti–6Al–4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.  相似文献   

14.
In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×104 W/cm2, and the average peak power density is 2.6×105 W/cm2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.  相似文献   

15.
The lap welding of JSC270CC steel and A6111-T4 aluminum alloys were carried out by a dual-beam YAG laser with the continuous wave (CW) and pulse wave (PW) modes. The microstructure of the welded joints were examined with SEM, EPMA while the properties were checked with microhardness tester and tensile testing machine. It was shown that the dual-beam laser welding can effectively reduce or avoid the formation of the blowholes in the welded joints. The PW laser beam penetrated the welding pool, leading to the root-shape structures with enhanced bonding strength at the weld interface. A 10 μm intermetallic compound (IMC) layer was generated at the interface. The shearing strength of lap joint was measured to be 128 MPa.  相似文献   

16.
Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.  相似文献   

17.
Absorber-free transmission and butt-welding of different polymers were performed using thulium fiber laser radiation at the wavelength 2 μm. The relations between the laser process conditions and the dimensions and quality of the seam were investigated by means of optical and phase-contrast microscopy. Mechanical properties of the weld joints were studied in tensile strength tests. Laser-welded polyethylene samples revealed a tensile strength of greater than 80% of the bulk material strength. Transmission welding of different polymer combinations featured the formation of different joint classes depending on the spectral properties. The experiments demonstrate new application areas of mid-IR fiber laser sources for materials processing.  相似文献   

18.
The microstructural characteristics and mechanical properties, including micro-hardness, tensile properties, three-point bending properties and Charpy impact toughness at different test temperatures of 8 mm thick S960 high strength steel plates were investigated following their joining by multi-pass ultra-narrow gap laser welding (NGLW) and gas metal arc welding (GMAW) techniques. It was found that the microstructure in the fusion zone (FZ) for the ultra-NGLW joint was predominantly martensite mixed with some tempered martensite, while the FZ for the GMAW joint was mainly consisted of ferrite with some martensite. The strength of the ultra-NGLW specimens was comparable to that of the base material (BM), with all welded specimens failed in the BM in the tensile tests. The tensile strength of the GMAW specimens was reduced approximately by 100 MPa when compared with the base material by a broad and soft heat affected zone (HAZ) with failure located in the soft HAZ. Both the ultra-NGLW and GMAW specimens performed well in three-point bending tests. The GMAW joints exhibited better impact toughness than the ultra-NGLW joints.  相似文献   

19.
In this research work, a statistical analysis of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets was done using response surface methodology. The analysis considered the effect of laser power (2–2.2 kW), welding speed (40–50 mm/s) and focus position (?1 to 0 mm) on the heat input, the weld bead geometry, uniaxial tensile strength, formability limited dome height and welding operation cost. The experimental design was based on Box–Behnken design using linear and quadratic polynomial equations for predicting the mathematical models. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used and the welding speed is the most significant parameter during the welding process.  相似文献   

20.
In the present work, laser welding with filler wire was successfully applied to joining a new-type Al–Mg alloy. Welding parameters of laser power, welding speed and wire feed rate were carefully selected with the objective of producing a weld joint with the minimum weld bead width and the fusion zone area. Taguchi approach was used as a statistical design of experimental technique for optimizing the selected welding parameters. From the experimental results, it is found that the effect of welding parameters on the welding quality decreased in the order of welding speed, wire feed rate, and laser power. The optimal combination of welding parameters is the laser power of 2.4 kW, welding speed of 3 m/min and the wire feed rate of 2 m/min. Verification experiments have also been conducted to validate the optimized parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号