首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We perform molecular-dynamics calculations to investigate the structural transformation of a copper cluster containing 201 atoms in its melting process within the framework of the embedded-atom method (EAM). Concerning melting, the obtained results reveal that its structural changes are different from those of larger-size clusters containing several hundreds or more atoms and smaller-size clusters containing tens of atoms. The melting process of this Cu201 cluster involves three stages, firstly some atoms in inner regions of this cluster move into outer regions accompanying the structural transformation of the local atom packing, followed by the continuous interchange of atomic positions, and finally this cluster is wholly disordered. During the temperature increase, the structural changes of different regions determined by atom density profiles result in apparent increases in internal energy. By decomposing peaks of pair distribution functions (PDFs) according to the pair analysis (PA) technique, the local structural patterns are identified for the melting of this cluster.  相似文献   

2.
The processes of melting and crystallization of Cu and Ni nanoclusters to 3.6 nm in diameter have been studied by the molecular-dynamics method. The effect of the particle size on the stability of structural modifications has been analyzed. The data obtained indicate a possibility of controlling to a certain extent the formation of the structure of Cu and Ni clusters during crystallization.  相似文献   

3.
采用分子动力学模拟研究了具有面心立方(fcc)晶格结构的截断八面体Ag309团簇升温过程中结构演变。对团簇的能量曲线变化、快照图演变和键对分析表明:无缺陷截断八面体Ag309团簇在410 K时转变为二十面体,在840 K时熔化;不同缺陷诱导二十面体结构转变温度异常变化,沿晶面滑移缺陷使二十面体转变温度升高,沿晶面旋转缺陷使二十面体结构转变温度降低;不同缺陷对团簇键型和势能产生的影响是使二十面体结构转变温度异常变化的主要诱导因素。这种通过缺陷控制团簇结构转变的研究为新型纳米结构的可控制备提供理论基础。  相似文献   

4.
采用分子动力学结合嵌入原子方法对比研究了Co分布于Cu-Co团簇不同层的结构和性质.研究表明:Co原子分层掺杂可对团簇的结构转变点和熔点进行诱导控制;分层掺杂的Cu-Co团簇第一相变是一种扩散度较小的由立方八面体转变为二十面体的相变;Co原子易于向低能态团簇的亚表层(111)面偏析,从而诱导团簇结构紊乱,造成其熔点差异.  相似文献   

5.
采用分子动力学结合嵌入原子方法对比研究了Co分布于Cu-Co团簇不同层的结构和性质. 研究表明:Co原子分层掺杂可对团簇的结构转变点和熔点进行诱导控制;分层掺杂的Cu-Co团簇第一相变是一种扩散度较小的由立方八面体转变为二十面体的相变;Co原子易于向低能态团簇的亚表层(111)面偏析, 从而诱导团簇结构紊乱, 造成其熔点差异.  相似文献   

6.
The structure formation in gold nanoparticles 1.6–5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.  相似文献   

7.
孙凌涛  郭朝中  肖绪洋 《物理学报》2016,65(12):123601-123601
采用分子动力学结合镶嵌原子势方法,模拟研究了Cu原子分别分布于基体Co团簇内层和表面构成Cu-Co合金团簇的结构和热力学性质,研究表明,相同数目的 Cu原子掺杂到基体中因掺杂层的不同,会诱导内层Co团簇和外层Co团簇结构、能量及熔点表现出巨大差异;Cu原子在团簇各层掺杂位置的差异,会导致原子向低能态位置偏移,但相对移动后后续原子的补位,使团簇结构随温度呈相对无扩散度相变;Cu原子由内层向表面偏析是内层Co团簇与相同原子数比例的外层Co团簇熔点产生巨大差异的主要原因.  相似文献   

8.
研究CuNN=57,58,59)熔融铜团簇在冷却过程以及300 K时两个具有二十面体结构Cu55团簇在并合过程中的结构变化.对这些小尺寸团簇的结构变化采用基于嵌入原子方法的正则系综分子动力学进行计算机模拟.通过对模拟结果的分析表明,小团簇的冷却和并合过程存在阶段变化的特点.降温过程中CuNN=57,58,59)团簇的原子运动及其微观结构变化表现出较大差异,由此导致这三类团簇内原子排布的不同,其中Cu59团簇结构的有序程度最低.在两个Cu55团簇并合早期阶段,这两个团簇相接触后发生变形导致原子位置出现较大改变,在随后的并合过程中,原子扩散引起原子局部位置调整导致所并合体系的结构发生变化.远离两个团簇接触区的原子仍保持其并合前的结构. 关键词: 团簇 分子动力学 计算机模拟 表面  相似文献   

9.
The thermal stability, phases and phase changes of small carbon clusters and fullerenes are investigated by constant energy Molecular Dynamics simulations performed over a wide range of temperatures, i.e., from to above the melting point of graphitic carbon. The covalent bonds between the carbon atoms in the clusters are represented by the many-body Tersoff potential. The zero temperature structural characteristics of the clusters, i.e., the minimum energy structures as well as the isomer hierarchy can be rationalized in terms of the interplay between the strain energy (due to the surface curvature) and the number of dangling bonds in the cluster. Minimization of the strain energy opposes the formation of cage structures whereas minimization of the number of dangling bonds favors it. To obtain a reliable picture of the processes experienced by carbon clusters as a function of temperature, both thermal and dynamical characteristics of the clusters are carefully analyzed. We find that higher excitation temperatures are required for producing structural transformations in the minimum energy structures than in higher lying isomers. We have also been able to unambiguously identify some structural changes of the clusters occurring at temperatures well below the melting-like transition. On the other hand, the melting-like transition is interrupted before completion, i.e., the thermal decomposition of the clusters (evaporation or ejection of or units) occurs, from highly excited configurations, before the clusters have fully developed a liquid-like phase. Comparison with experiments on the thermal decomposition of and a discussion of the possible implications of our results on the growth mechanisms leading to the formation of different carbon structures are included. Received: 25 March 1998 / Received in final form: 30 October 1998  相似文献   

10.
张林  王绍青  叶恒强 《中国物理》2006,15(3):610-617
We have performed molecular dynamics simulations of structural changes due to quenching the melting interface at a Cu $\Sigma $5(310)/[001] symmetrical tilt grain boundary. The simulation results suggest that the grain boundary structures due to quenching are different from those due to heating up to the same temperature. The calculated atom density profiles show that the grain boundary structures can be significantly changed as they are quenched to quite low temperatures.  相似文献   

11.
Cu-Au alloy nanoparticles are known to be widely used in the catalysis of various chemical reactions as it was experimentally defined that in many cases the partial substitution of copper with gold increases catalytic activity. However, providing the reaction capacity of alloy nanoparticles the surface electronic structure strongly depends on their atomic ordering. Therefore, to theoretically determine catalytic properties, one needs to use a most real structural model complying with Cu-Au nanoparticles under various external influences. So, thermal stability limits were studied for the initial L12 phase in Cu3Au nanoalloy clusters up to 8.0 nm and Cu-Au clusters up to 3.0 nm at various degrees of Au atom concentration, with molecular dynamics method using a modified tight-binding TB-SMA potential. Dual structural transition L12?→?FCC and further FCC?→?Ih is shown to be possible under the thermal factor in Cu3Au and Cu-Au clusters with the diameter up to 3.0 nm. The temperature of the structural transition FCC?→?Ih is established to decrease for small particles of Cu-Au alloy under the increase of Au atom concentration. For clusters with this structural transition, the melting point is found to be a linear increasing function of concentration, and for clusters without FCC?→?Ih structural transition, the melting point is a linear decreasing function of Au content. Thus, the article shows that doping Cu nanoclusters with Au atoms allows to control the forming structure as well as the melting point.  相似文献   

12.
Effect of potential energy distribution on the melting of clusters   总被引:3,自引:0,他引:3  
We find that the potential energy distribution of atoms in clusters can consistently explain many important phenomena related to the phase changes of clusters, such as the nonmonotonic variation of melting temperature with size, the dependence of melting, boiling, and sublimation temperatures on the interatomic potentials, the existence of a surface-melted phase, and the absence of a premelting peak in heat capacity curves. We also find a new type of premelting mechanism in double icosahedral Pd19 clusters, where one of the two internal atoms escapes to the surface at the premelting temperature.  相似文献   

13.
郑治秀  张林 《物理学报》2017,66(8):86301-086301
采用基于嵌入原子方法的分子动力学方法模拟了具有体心立方晶格结构的Fe基体中包含小尺寸Cu纳米粒子的Fe-Cu二元体系在升温过程中的原子堆积结构变化.进行了Cu原子均方位移、Cu原子对分布函数和原子的径向密度分布函数的计算,并对纯Cu原子区、Fe-Cu界面区和纯Fe基体区的分区域原子堆积结构进行了分析.结果表明,Fe基体内Cu团簇的尺寸及其在Fe基体内所能占据区域的大小,对不同温度下的Cu团簇内原子堆积结构及Fe基体的原子堆积结构具有影响.升温过程中不同尺寸受基体约束Cu团簇对Fe基体结构改变的影响表现出很大差异.对于Fe_(bulk)-Cu_(135)体系,基体的应变临近Fe-Cu界面区,同时在团簇中间的基体区域出现大量空位缺陷和应变集中区;对于Fe_(bulk)-Cu_(141)体系,随温度升高,基体中出现的应变区域表现为小尺寸、数量多向大尺寸、小数量的变化.  相似文献   

14.
采用基于嵌入原子方法的分子动力学,模拟了熔融Cu55团簇在Cu衬底(010)表面上以两个不同降温速率降温过程中结构的变化.模拟结果表明,降温速率对团簇结构的变化有很大影响.较快的降温速率使得降温过程中团簇原子具有较低的能量;较慢的降温速率有助于高温时位于衬底内的原子向衬底表面扩散,排列形成面心立方结构.  相似文献   

15.
硅团簇熔化行为的紧束缚分子动力学研究   总被引:5,自引:0,他引:5       下载免费PDF全文
王坚  王绍青 《物理学报》2003,52(11):2854-2858
利用紧束缚分子动力学方法研究了硅团簇Sin(n=5—10)的熔化行为.给出了团簇 熔化潜热 和熔点随团簇尺寸的变化关系,表明团簇熔化潜热和熔点强烈依赖于团簇的原子数.计算结 果表明硅团簇熔化机理与金属团簇熔化有很大不同,金属小团簇的熔化是一个从低温类固态 向高温类固态转变的过程,在转变温区,类固态和类液态处于动力学共存,而硅团簇在转变 温区则是处于一种中间态,这种中间态既不是类固态又不是类液态.比较了用不同计算方法 和定义方法所得硅团簇熔点. 关键词: 紧束缚 硅团簇 熔化潜热  相似文献   

16.
The structure and phase transitions in the mesoscopic system of vortices in a quasi-two-dimensional superconducting ring are investigated. The shell structure of the mesoscopic system of vortices is studied, and its variation with the number of vortices and the parameters of the superconducting ring is analyzed. Two mechanisms of formation of new shells in vortex clusters with an increasing number of vortices in an increasing magnetic field are discovered: the generation of a new shell in a cluster and the splitting of the internal shell into two shells. The melting of vortex clusters and their thermodynamic parameters are analyzed using the Monte Carlo method. It is found that the melting of shell-type clusters occurs in two stages, orientation melting taking place at the lower temperature (during which nearly crystalline adjacent shells start rotating relative to each other) and blurring of the vortex structure occurring at the higher temperature. The shells obtained by splitting upon an increase in the number of vortices do not participate in orientational melting. The two-stage form of melting is associated with the smaller height of potential barriers being surmounted during the rotation of shells relative to one another as compared to the barrier for vortices jumping from one shell to another.  相似文献   

17.
In the present investigation, the melting and thickening processes in lamellar crystals of isotactic polystyrene have been studied by transmission electron microscopy. It is shown that under properly chosen experimental conditions for the polymer, one can continuously follow the physical changes involved during the thickening as well as melting of lamellar crystals on heat treatment. The study of crystals grown at different temperatures reveals that melting of a single lamella starts at various areas. A commonly observed feature is the preferential melting of elastically bent parts of a lamella. It is indicated that the occurrence of melting in the various parts is due to a structural variation along the surface of lamellae resulting in a hindrance of the lamellar thickening process. At particular temperatures, melting of lamellar crystals is followed by recrystallization. The occurrence of a solid-stage thickening process is the major process so far observed during slow heat treatments. Considerable change in surface structure of the crystals grown at different temperatures is clearly reflected during the heat treatment. The rates of heating have marked influence on the resulting morphology of the crystalline superstructures.  相似文献   

18.
本文采用微正则分子动力学方法模拟研究了铂、铜和银原子纳米团族从固态到液态的熔化过程,得到热容量随温度变化关系,结果表明这三种金属纳米团簇在熔化过程中均出现了负热容现象,并通过对团簇热能随温度的变化关系以及团簇原子数径向分布的分析,探讨了产生负热容现象的微观机制.  相似文献   

19.
基于半经验的Gupta原子间多体相互作用势, 采用分子动力学方法并结合模拟退火及淬火技术, 系统研究了小尺寸铝团簇Aln (n=13–32)的熔化行为. 模拟结果表明: 除个别尺寸(Al13 和Al19) 外, 团簇熔化过程比热曲线普遍呈现杂乱无规(无明显单峰)现象, 这与实验观测小Al团簇比热普遍无规的结果完全一致. 通过分析不同温度点上团簇淬火构型的势能分布图给出了小Al团簇比热呈现无规或有规现象的成因. 对于比热无规团簇, 可以利用原子等价指数判断给出团簇熔点, 所得团簇熔点随团簇尺寸的变化趋势与实验观测结果完全一致. 关键词: Gupta势 团簇 分子动力学 熔化  相似文献   

20.
We present a theoretical study of the short-time relaxation of clusters in response to ultrafast excitations using femtosecond laser pulses. We analyze the excitation of different types of clusters (Hgn, Agn, Sin, C60 and Xen) and classify the relaxation dynamics in three different regimes, depending on the intensity of the exciting laser pulse. For low-intensity pulses (I<1012 W/cm2) we determine the time-dependent structural changes of clusters upon ultrashort ionization and photodetachment. We also study the laser-induced non-equilibrium fragmentation and melting of Sin and C60 clusters, which occurs for moderate laser intensities, as a function of the pulse duration and energy. As an example for the case of high intensities (I>1015 W/cm2), the explosion of clusters under the action of very intense ultrashort laser fields is described. Received: 26 November 1999 / Published online: 2 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号