首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The results of an isothermal creep investigation of Zr52.5Ti5Cu17.9Ni14.6Al10 bulk metallic glass at temperatures below the glass transition temperature are presented. The long-time (t > (2–4) × 103?s) creep regularities were found to be the same as those known for ribbon metallic glasses, in spite of the pronounced difference in the production quenching rates. It is argued that creep behaviour of bulk metallic glass is determined by the rate of irreversible structural relaxation. The apparent activation energy spectrum reconstructed from isothermal creep measurements agrees well with that determined from linear heating creep data.  相似文献   

2.
In this study, isothermal oxidation behavior of a Cu–Al–Ni–Fe shape-memory alloy between 500 and 900 °C was investigated. Alloy samples were exposed to oxygen by TG/DTA for 1 h at a constant temperature, allowing for calculation of the oxidation constant and activation energy values of the oxidation process. The oxidation constant value increased with temperature, reaching saturation at 800 °C. The effect of oxidation on crystal structure, surface morphology and chemical composition of the Cu–Al–Ni–Fe alloy was determined by X-ray diffractometer (XRD) and scanning electron microscope (SEM)–energy-dispersive X-ray (EDX) analyses. With increasing oxidation temperature, number and intensity of the characteristic 18R martensite phase peaks were reduced while Al2O3 phase peaks were increased. In parallel to the XRD results, the same variations were also detected by SEM–EDX measurements.  相似文献   

3.
An amorphous-nanocrystalline Gd2O3 powder with a specific surface area of 155 m2/g has been prepared using pulsed electron beam evaporation in vacuum. The nanopowder consists of 20- to 500-nm agglomerates formed by crystalline nanoparticles (3–12 nm in diameter) connected by amorphous-nanocrystalline strands. At room temperature, the Gd2O3 nanopowder exhibits a paramagnetic behavior. The phase transformations occurring in the powder have been investigated using differential scanning calorimetry and thermogravimetry (40–1400°C). The amorphous phase of the nanopowder is thermally stable up to a temperature of 1080°C. It has been found that the amorphous phase has an inhibitory effect on the temperature of the polymorphic transformation from the cubic phase into the monoclinic phase. It has been revealed that, compared with the microcrystalline powder, the Gd2O3 nanopowder is characterized by a complete quenching of photoluminescence.  相似文献   

4.
《Current Applied Physics》2010,10(2):698-702
Ceramic coatings were prepared in Na2SiO3–Na2CO3–NaOH system by pulsed bi-polar plasma electrolytic oxidation on Ti–6Al–4V alloy. The phase composition, structure and the elemental distribution of the coatings were studied by XRD, SEM and energy dispersive spectroscopy, respectively. The thermal shock resistance of the coated samples at 850 °C was evaluated by the thermal shock tests. The high temperature oxidation resistance of the coating samples at 500 °C was investigated. The results showed that the coating was mainly composed of rutile- and anatase TiO2, Increasing the concentration of Na2SiO3, TiO2 content decreased gradually while the thickness of the coating increased. There were a large amount of micro pores and sintered particles on the surface of the coatings. Increasing concentration of Na2SiO3, the sintered particles on the surface turned large, and the Si content increased while the Ti content decreased gradually. When the concentration of Na2SiO3 was 15 g/L, the thermal shock resistance of the coatings was better than that of the coatings that prepared under other Na2SiO3 concentrations. The coating samples prepared under the optimized technique process based on the thermal shock tests improved the high temperature oxidation resistance at 500 °C greatly, whether considering the isothermal oxidation or the cyclic oxidation.  相似文献   

5.
A study by Conversion Electron Mössbauer Spectroscopy (CEMS) carried out by using a Parallel Plate Avalanche Counter with samples of Fe--Ni alloys (50 and 65 at.% Fe) is reported. Each sample was analyzed without oxidation and after heating it under an oxygen atmosphere at 200°C. All CEMS measurements were carried out at room temperature. In both samples (50 and 65 at.% Fe), without oxidation and after oxidation, the Mössbauer spectra showed a six line magnetic spectrum according to their ferromagnetic character, with a broad Hyperfine Field Distribution (HFD), according to the disordered character of the alloys. The obtained Mean Hyperfine Field (MHF) for the sample 50 at.% Fe was 30.9 T, meanwhile for the invar composition (65 at.% Fe) was 25.5 T, which is close to values previously reported by Transmission Mössbauer Spectroscopy (TMS). Results from the treated samples (with oxidation at 200°C) showed a difference in the surface composition as a result of this process. In the 50 at.% Fe sample, additionally appeared a doublet that could be assigned to an oxihydroxide of Fe3+. Otherwise, the 65 at.% Fe sample (invar) presented ferromagnetic oxides (α-Fe2O3 and Fe3O4) with a large relative area (82.5%).  相似文献   

6.
The relation between the temperature Tα of the dipolar relaxation, obtained by the technique of thermally stimulated currents (TSC) and the glass transition temperature Tg has been studied in amorphous poly(ethylene terephthalate) samples. The temperature Tα depends fundamentally on the polarization temperature Tp, the polarization time tp, and the heating rate v. For each heating rate a maximum Tα, TM, was obtained for an optimum polarization temperature Tpo. The value of Tpo is 70°C, independent of the heating rate, and very close to the glass transition temperature obtained by differential scanning calorimetry (69°C). The resulting value for TM coincides with Tpo in the limits of null heating rate and null isothermal polarization time, and, consequently, TM gives the value of the glass transition temperature for each heating rate as a function of the isothermal dipolar contribution on polarizing at the temperature Tpo.  相似文献   

7.
The kinetics of the CO oxidation reaction were examined on the Pt(100)-(5 × 20) surface under UHV conditions. The transient isothermal rate of CO2 production was examined both for exposure of an oxygen-dosed surface to a beam of CO and for exposure of a CO-dosed surface to a beam of O2. Langmuir-Hinshelwood kinetics were found to apply in both cases. For the reaction of CO with preadsorbed oxygen atoms, the reaction rate was dependent upon the square-root of the oxygen atom coverage, suggesting that oxygen atoms were adsorbed in islands on this surface. The oxidation of preadsorbed CO was observed only when the initial CO concentrations were less than 0.5 monolayer (c(2 × 2) structure), suggesting that the dissociative adsorption of oxygen required adjacent four-fold surface sites. The activation energy calculated for the reaction of CO with preadsorbed oxygen was 31.4 kcal/mol. This value was 30 kcal/mol greater than the activation energy measured for the reaction of O2 with preadsorbed CO. Strong attractive interactions within the oxygen islands were at least partially responsible for this difference. The reaction kinetics in both cases changed dramatically below 300 K; this change is believed to be due to phase separation at the lower temperature.  相似文献   

8.
High temperature Raman experiments were carried out on carbon nanowalls (CNWs). The intensity of the defect‐induced D mode decreased significantly after the sample was heated in air ambient. The Raman intensity ratio of D mode and G mode, ID/IG, changed from 2.3 at room temperature to 1.95 after the sample was heated to 600 °C. This change was attributed to the removal of surface amorphous carbon by oxidation. In contrast to ID/IG, the intensity ratio of the D′ mode and the G mode, ID′/IG, did not change much after heating, indicating that the surface amorphous carbon and surface impurity do not contribute as much to the intensity of the D′ mode. The dominant contributor to the D′ mode could be the intrinsic defects. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The recovery of inelastic strains in Ti-Ni alloy samples irradiated in a nuclear reactor under isothermal conditions was studied. Before irradiation, the cylindrical samples were compressed to a residual strain of 3–6% in the martenstici state at room temperature. The samples were irradiated at a temperature of 45°C, which does not exceed the temperature of the onset of the reverse martensitic transformation A S . Irradiation with a fastneutron fluence of 5 × 1020 cm?2 is established to result in the recovery of the residual strain. The value of the recoverable strain is comparable to that observed under the conditions of the shape memory effect on heating of the deformed alloy and even somewhat exceeds it. The obtained data show that neutron irradiation can induce the shape-memory effect in the TiNi alloy. This is due to a decrease in the temperatures of the martensitic transformations under irradiation.  相似文献   

10.
《Solid State Ionics》2006,177(5-6):559-568
Ni-based alloy Haynes 242 with low coefficient of thermal expansion (CTE) was evaluated as a candidate material for solid oxide fuel cell (SOFC) interconnect application in this paper. Short-term isothermal oxidation tests at 700, 800 and 900 °C in air indicated that the oxidation kinetics of Haynes 242 obeyed the parabolic law and the weight gain of the alloy increased with the increase in oxidation temperature. The oxides formed on it consisted of an outer layer of NiO and an inner layer of Cr2O3 with (Mn,Cr)3O4 spinel; however, the top NiO layer did not uniformly cover the surface of the sample. The long-term isothermal and cyclic oxidation resistance of this alloy at 800 °C in air was similar to that of current interconnect alloys Ebrite and Haynes 230, and better than that of Crofer. The area specific resistance (ASR) of the surface oxides formed on Haynes 242 was comparable to that of Haynes 230, and lower than that of Ebrite and Crofer after similar thermal exposures. Based on the experimental results, the potential of Haynes 242 as interconnect material of intermediate temperature SOFC was discussed.  相似文献   

11.
The impurity composition on and near the cylindrical surface of a CVD polycrystalline tungsten film covering Nb + 1% Zr alloy is determined with SIMS and AES methods. The alloy is used as the collector material in thermionic thermal-to-electrical energy converters of space-borne nuclear power plants. A comparison with the impurity composition of a reference plane-parallel relatively perfect W(110) single crystal is made. At all stages of milling the surface by He+ and Ar+ ion beams, the coating is contaminated greater than the reference. Even after the first heating in vacuo to 1625 K, all the impurities, except carbon, oxygen, and niobium, are removed. The three impurities named are not removed by heating up to 2075 K. Niobium is shown to diffuse toward the surface through a W coating of thickness up to 30 μm. At temperatures above 1925 K, the material is heavily sputtered. After 50 oxidation cycles, the carbon content in the coating is greatly reduced. However, the subsequent 25 cycles fail in further decreasing the carbon content. The fact that oxygen cannot be removed from the surface by heating to 1925–2075 K suggests the presence of high-temperature surface Nb2W2O suboxide. It is recommended that the purity of the W coating raised in order to improve its adhesion to the O-Cs film.  相似文献   

12.
The initial stages of oxidation of the (100) surface of a single crystal alloy specimen of approximate atomic composition Ni 59, Fe 41 (at%) have been studied by Auger spectroscopy and electron diffraction techniques. The clean alloy surface shows only a slight iron enrichment over the temperature range of the oxidation studies (373–873 K). Oxidation studies were performed over the O2 pressure range 5 × 10?9 to 1 × 10?6 Torr. Within these experimental conditions the rate of oxygen uptake was found to be linear in pressure and essentially independent of temperature. LEED studies showed that a chemisorbed c(2 × 2) structure preceded the formation of surface oxides. The interaction of oxygen with the surface induced a marked segregation of iron and this was particularly pronounced at elevated temperatures. Chemical shifts were observed in the low energy Ni and Fe Auger spectra during oxidation; these were similar to those previously observed in separate studies of the oxidation of pure Ni and of pure Fe. At the higher temperatures the initial oxide layer grew epitaxially apparently as a (111) cubic oxide on the (100) substrate. The Ni to Fe concentration ratio in oxides several layers thick was found to depend on the temperature of the reaction; at higher temperatures the oxide were more Fe-rich. The Fe to Ni ratio in oxides produced at lower temperatures could be increased by annealing. At large O2 exposures (about 5000 L) a transition was observed in the structure of the oxide layer.  相似文献   

13.
Auger spectroscopy, electron energy loss spectroscopy and ion depth profiling techniques, under ultra high vacuum conditions, have been used in a comparative study of the oxidation of clean and gold precovered silicon (111) surfaces. Exposure of a Si surface covered by a few Au monolayers to an oxygen partial pressure induces the formation of SiO4 tetrahedra even at room temperature. In contrast, oxidation under the same conditions of a clean Si(111) surface leads to the well known formation of a chemisorbed oxygen monolayer. In the case of the Au covered surfaces, the enhancement of the oxide growth is attributed to the presence of an AuSi alloy where the hybridization state of silicon atoms is modified as compared to bulk silicon. This Au catalytic action has been investigated with various parameters as the substrate temperature, oxygen partial pressure and Au coverage. The conclusions are two fold. At low temperature (T < 400°C), gold atoms enhance considerably the oxidation process. SiO4 tetrahedra are readily formed even at room temperature. Nevertheless, the SiO2 thickness saturates at about one monolayer, this effect being attributed to the lack of Si atoms alloyed with gold in the reaction area. By increasing the temperature (from 20°C to ~400°C), silicon diffusion towards the surface is promoted and a thicker SiO2 layer can be grown on top of the substrate. In the case of the oxidation performed at temperature higher than 400°C, the results are similar to the one obtained on a clean surface. At these temperatures, the metallic film agglomerates into tridimensional crystallites on top of a very thin AuSi alloyed layer. The fact that the latter has no influence on the oxidation is attributed to the different local arrangement of atoms at the sample surface.  相似文献   

14.
Isothermal aging and temperature cycle experiments were done on the relaxor ferroelectric lead magnesium niobate mixed with 10% lead titanate (PMN-10PT) around and below the diffuse maximum of the dielectric loss. With increasing aging time tw the isothermal evolution of the linear susceptibility follows a power law and does not show frequency scaling. The non-linear susceptibility, however, obeys nearly perfect ωt w-scaling. After aging the sample at a single temperature we observed both rejuvenation and memory effects in temperature cycle experiments. This observation indicates symmetric behavior in the sense that it shows up irrespective of whether cooling with subsequent re-heating or heating with subsequent re-cooling was performed. The memory effect is absent if subsequent to aging the temperature is increased significantly above that corresponding to the maximum in the dielectric loss. The symmetric behavior within negative and positive temperature cycles under these conditions can be rationalized by the notion of movable domain walls. These become fixed in their configuration on a large spatial scale while more flexible wall segments still show re-conformation processes when cooling or heating the sample after aging. Received 18 December 2001 and Received in final form 28 January 2002  相似文献   

15.
Micro‐Raman spectroscopy was applied to the characterization of the chemical composition and topography of protective oxide layers formed under atmospheric conditions on the surface of thin chromium films. Strips of the layers were produced by local thermal heating using focused sub‐picosecond pulsed laser radiation. It is shown that a CrO2 layer is initially formed on the chromium surface at low light exposures. Increasing the exposure results in the transformation of the CrO2 layer to Cr2O3. The influence of the etching conditions on the composition and thickness of the oxide layers is investigated. The topography of the CrO2 and Cr2O3 oxide layers in transverse sections of the strips is demonstrated by the Raman mapping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Polymer nanocomposites with ferroelectric fillers are promising materials for modern power electronics that include energy storage devices. Ferroelectric filler, Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) nanopowder, was synthesized by sol-gel method. X-ray diffraction (XRD) studies confirmed the phase purity and the particle size distribution was determined by transmission electron microscopy (TEM). Extended aromatic ligand in the form of naphthyl phosphate (NPh) was chosen for surface passivation of BCZT nanoparticles. Surface functionalization was validated by thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy using slurry technique. The dielectric constant of surface-passivated BCZT nanopowder was ~155, whereas pristine BCZT nanopowder dielectric constant could not be assessed due to high innate surface conductivity. Furthermore, BCZT–epoxy nanocomposite films were prepared and analyzed by differential scanning calorimetry (DSC), dielectric spectroscopy, dielectric breakdown strength (DBS), and scanning electron microscopy (SEM). Owning to stronger polymer–particle interface, dielectric measurements of 5 vol.% NPh surface functionalized BCZT–epoxy nanocomposites indicated improved DBS and glass transition temperature (Tg), reduced dielectric loss, and enhanced energy storage density compared to untreated BCZT–epoxy composites and pure epoxy. The energy storage density of 30 vol.% NPh surface functionalized BCZT–epoxy nanocomposite of 20 μm film thickness was almost three times that of pure epoxy polymer of identical film thickness.  相似文献   

17.
The oxidation kinetics and the mechanism of two-phase Mg–Nd alloys were investigated via isothermal heating experiments conducted in dry air at 500 °C for 12 h. The oxidation kinetic curves reveal improved oxidation resistance on neodymium (Nd)-containing alloys compared to pure Mg. A lower mass gain was detected at 2.5-%Nd than at 6-Nd%, which was related to the lower amount of intermetallic phase on the alloy surface. The intermetallic phase has a significant effect on the oxide growth stage. Nd2O3 formation on the intermetallic phases creates diffusion paths for oxygen to the metal/oxide interface, affecting both the oxidation kinetics and the oxidation resistance of the alloys. The formation of a Nd-depleted region at the subsurface due to extensive Nd oxidation at the oxide/intermetallic interface lowers the protective ability of the oxide scale. As increasing the Nd content of binary Mg–Nd alloys above 0.5 wt% shifts the alloys from single-phase region to two-phase region, it adversely affects the ignition resistance.  相似文献   

18.
The mechanism of the thermal transformation of FeSO4·H2O in air has been studied under isothermal conditions at temperatures (150–460)°C using mainly57Fe Mössbauer spectroscopy and X-ray powder diffraction (XRD). Two trends are typical for the thermal behaviour of FeSO4·H2O in air, a tendency toward oxidation and dehydration. We suggested a new transformation model consisting of two ways of oxidation, direct one and indirect one. Fe(OH)SO4 was identified as a product of the direct way, Fe2(SO4)3 and superparamagnetic nanoparticles ofγ-Fe2O3 as products of the indirect way. The suggested model of simultaneous reactions explains the unusual non-monotonous dependence of the oxidation level of the thermally treated samples on temperature.  相似文献   

19.
Magnetic field (0–4 T) and temperature dependencies (4.2–320 K) of the electrical resistance of Gd5(Si1.5Ge2.5), which undergoes a reversible first-order ferromagnetic↔paramagnetic phase transition, have been measured. The electrical resistance of Gd5(Si1.5Ge2.5) indicates that the magnetic phase transition can be induced by both temperature and magnetic field. The temperature dependence of the electrical resistance, R(T), for heating at low temperatures in the zero magnetic field has the usual metallic character, but at a critical temperature of Tcr=216 K the resistance shows a 20% negative discontinuity due to the transition from the low-temperature high-resistance state to the high-temperature low-resistance state. The R(T) dependence for cooling shows a similar but positive 25% discontinuity at 198 K. The isothermal magnetic field dependence of the electrical resistance from 212T224 K indicates the presence of temperature-dependent critical magnetic fields which can reversibly transform the paramagnetic phase into the ferromagnetic phase and vice versa. The critical magnetic fields diagram determined from the isothermal magnetic field dependencies of the electrical resistance of Gd5(Si1.5Ge2.5) shows that the FM↔PM transition in zero magnetic field on cooling and heating occurs at 206 and 213 K, respectively. The full isothermal magnetic filed hysteresis for the FM↔PM transition is 2 T, and the isofield temperature gap between critical magnetic fields is 7 K.  相似文献   

20.
Differential scanning calorimetry was used to study glassy Se100- x Sb x (x = 2, 4, 6, 8 and 10) alloys at a heating rate of 10°C min?1 under non-isothermal conditions. An extremely large increase in the specific heat, Cp , was observed at the glass-transition temperature. It was also found that the values of Cp below and above the glass-transition temperature, Cpg and Cpe , respectively, are highly composition dependent. This indicates that the Sb additive used in the present study influences the structure of the a-Se. The variation of Cp reveals local extrema in the Se–Sb glassy system at x = 4 and x = 8. The composition dependence of both Cpe and Cpg is explained in terms of the atomic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号