首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The composition of dental tissues and their interaction determines its mechanical properties. The mechanical properties and chemical composition of the teeth of extant reptiles are still poorly studied areas. As a preliminary study the fangs of four species of snakes and a human tooth were investigated through nanoindentation and Raman spectroscopy. The average elastic modulus values for the main body of the fangs ranged from 15.3 GPa to 24.6 GPa, and 19.1 GPa for the human dentine. Raman spectroscopy and principal component analysis (PCA) showed that snake fangs are similar in composition to human dentine, both of which comprised of hydroxyapatite and an organic matrix. The elastic modulus and hardness data were correlated to the Raman spectra using partial least squares regression (PLS). The spectral features which correlated with the elastic modulus would suggest that elastic modulus is dependent on the relative protein to mineral amounts in the tooth. The form of the phosphate and the relative levels of phosphate to organic components also appear to be governing factors for elastic modulus. The PLS of Raman spectra against the hardness gave very similar results. The small differences between snake fangs and human dentine appeared to be because of carbonate content, with higher levels of carbonate in the human tooth than the snake fangs. Snake fangs should be able to withstand large lateral forces. Human dentine aids in dissipating imposed loads. This similarity in the chemical composition of the snake fangs and human dentine supported the findings of the similarities in mechanical properties, which may be attributed to the similar functional demands of these biocomposites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Electron paramagnetic resonance (EPR) dosimetry of tooth enamel in X-band has been established as a suitable method for individual reconstruction of doses 0.1 Gy and higher. The objective was to demonstrate the feasibility of using Q-band EPR in small biopsy tooth enamel samples to provide accurate measurements of radiation doses. Q-band spectra of small (<10 mg) irradiated samples of dentine and bone were studied to investigate the possibility of using Q-band EPR for dose measurements in those materials if there are limited amounts of enamel available, and there is no time for the chemical sample preparation required for accurate X-band measurements in dental enamel. Our results have shown that Q-band provides accurate measurements of radiation doses higher than 0.5 Gy in tooth enamel biopsy samples as small as 2 mg. Q-band EPR spectra in powdered dentine and bone demonstrated significantly higher resolution and sensitivity than in conventional X-band measurements.  相似文献   

3.
The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm3/s in dentine and 0.7 mm3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm3/s in dentine and 0.12 mm3/s in enamel). Since the presented method proves to be easy to use and allows quite rapid measurements it may become a valuable tool to study the influence of various laser parameters on the outcome of laser ablation of dental tissues.  相似文献   

4.
For better selection of “tooth-like” dental restorative materials, it is of great importance to evaluate the thermal properties of the human tooth. A simple method capable of non-destructively characterizing the thermal properties of the individual layers (dentine and enamel) of human tooth is presented. The traditional method of monotonic heating regime was combined with infrared thermography to measure the thermal diffusivities of enamel and dentine layers without physically separating them, with 4.08 (±0.178) × 107 m2/s measured for enamel and 2.01 (±0.050) × 107 m2/s for dentine. Correspondingly, the thermal conductivity was calculated to be 0.81 W/mK (enamel) and 0.48 W/mK (dentine). To examine the dependence of thermal conductivity on the configuration of dentine microstructure (microtubules), the Maxwell-Eucken and Parallel models of effective thermal conductivity are employed. The effective thermal conductivity of dentine in the direction parallel to tubules was found to be about 1.1 times higher than that perpendicular to the tubules, indicating weak anisotropy. By adopting the Series model, the bulk thermal conductivity of enamel and dentine layers is estimated to be 0.57 W/mK.  相似文献   

5.
Space-averaged surface temperature distributions and overall Nusselt number measurements have been carried out to study the transient mixed convection heat transfer in a channel with two facing and symmetrically heated semicircular cavities. Effects of buoyancy, channel orientation, and channel aspect ratio on thermal behavior have been investigated from Re 500 to 1,500. Depending on the parametric set, steady, oscillatory, and irregular thermal regimes have been identified. The natural frequencies and time scales of the oscillatory regimes have been obtained using spectral analysis. Results show that with increase in channel aspect ratio, the heat transfer performance reduces for all inclination angles.  相似文献   

6.
This paper studies plastic strain localization and stress-strain evolution in commercial titanium specimens with an ultrasonically treated surface. A dynamic plane strain boundary-value problem is numerically solved by the finite difference method. The microstructure and mechanical properties of the composition are specified in the calculations based on microhardness measurements, mechanical tensile tests, and metallographic studies. The dependences of the plastic flow localization characteristics on the geometry and mechanical properties of ultrasonically treated surface layers have been established. Plastic strain localization is found to depend on the geometry and mechanical properties of ultrasonically treated surface layers.  相似文献   

7.
Quantitative transient IR thermography has been applied to the characterization of hidden corrosion in metals. A dedicated 3D numerical model of heat transfer has been used to solve the direct thermal problem and to simulate the test. Theoretical modelling allows the verification of limits of the ID solution and the derivation of coefficients which take heat diffusion into account. An analysis of inversion accuracy was carried out. A simple algorithm based on a surface temperature time-derivative is proposed for detecting thickness variations. Then, material loss in an area of arbitrary shape is evaluated applying a modified algorithm, originally developed for a ID thermal model. The potential of dedicated image processing in enhancing a signal-to-noise ratio is explored. The feasibility of corrosion quantification by the proposed inversion algorithm is demonstrated with experimental results. Detection and evaluation of hidden material loss within a boiler section, typically used at a power plant station, has been performed. The external surface was heated with flash lamps and temperature response was analyzed both in time and space domains. The masking effect due to the noisy inspected surface (not painted and affected by a long time service) were substantially removed before evaluating corrosion. Obtained results have been compared with measurements produced by the ultrasonic method.  相似文献   

8.
Ni  Y. R.  Guo  Z. Y.  Shu  S. Y.  Zeng  C. C.  Zhong  H. Q.  Chen  B. L.  Liu  Z. M.  Bao  Y. 《Laser Physics》2011,21(12):2138-2142
In this paper, we report the outcomes from a pilot study on using OCT functional imaging method to evaluate and quantify color alteration in the human teeth in vitro. The image formations of the dental tissues without and with treatment 35% hydrogen peroxide were obtained by an OCT system at a 1310 nm central wavelength. One parameter for the quantification of optical properties from OCT measurements is introduced in our study: attenuate coefficient (μ). And the attenuate coefficient have significant decrease (p < 0.001) in dentine as well as a significant increase (p < 0.001) in enamel was observed during tooth bleaching process. From the experimental results, it is found that attenuate coefficient could be useful to assess color alteration of the human tooth samples. OCT has a potential to become an effective tool for the assessment tooth bleaching. And our experiment offer a now method to evaluate color change in visible region by quantitative analysis of the infrared region information from OCT.  相似文献   

9.
Human dentine is a composite material made up of constituents of varying thermal properties, which when subjected to changes in temperature experiences complex thermal effects. In this study, the response of functionally adapted dentine to temperature changes in physiological range is analyzed using a digital speckle pattern interferometer (DSPI) and thermography in conjunction with an advanced digital fringe processing technique. The advanced digital fringe processing is conducted using an asymmetric and central peak Gaussian filter, in order to remove noise and, subsequently, enhance the quality of the images. This investigation demonstrates the responds of functionally adapted dentine to temperature changes in its own plane and out of plane. Distinct pattern of out-of-plane and in-plane displacement was observed on the dentine by the DSPI analysis. The thermo-graphic analysis was used to rationalize the above nature of deformation in the dentine. These analyses showed that the inner, cervical dentine exhibited conspicuous deformation at the maximum temperature rise and equilibrated last during temperature drop.  相似文献   

10.

The problem of 1D radiative-conductive heat transfer in a homogeneous isotropic gray medium near a planar diffuse nontransparent surface and in between parallel plates with different temperatures has been solved analytically. Nonconvective measurements of the thermal resistance of parallel-plane polyethylene foam specimens versus the number of layers (i.e., thickness) have been taken, both without and with thin screens made of aluminum foil. The applicability of the suggested theoretical approach and experimental technique for the measurement of radiative heat transfer and heat transfer by conduction in light heat-protective materials has been demonstrated.

  相似文献   

11.
Near-field thermoelastic imaging is a simple way to investigate the thermal and coupled thermoelastic properties of materials. A few microscopes, deriving from the atomic force microscope, have been used to observe and to quantify the samples observed. But the main problem is the absolute measurement of the temperature, because surface topography and thermal expansion contributions are not easily discernible. In the proposed SThEM (scanning thermoelastic microscope), the tip is excited at the resonance frequency of the cantilever and the sample is periodically heated by the Joule effect. Thus the static contributions (drift, topography) are reduced. Moreover, a radiometric sensor, operating in the far field, has been added in order to quantify the temperature. This multi-acquisition microscope enables one to investigate small objects at the nanoscale with complementary information at the micrometric scale.  相似文献   

12.
A method for remote monitoring of temperature in the focal region of a high-intensity ultrasonic transducer is described. Results of measurements and theoretical simulation are presented. The measurements were conducted on a polymer sample with thermophysical and acoustic parameters close to the properties of a soft biological tissue. The sample was heated by a focused piezoelectric transducer with different values of radiation power. The delay of a probe pulse transmitted through the heated region perpendicularly to the axis of the intense ultrasonic beam was detected. The local character of temperature measurements was provided by focusing the probe pulse at the heated region. The application of an additional transducer installed confocally with the probing one provided an opportunity to enhance the precision of measurements. An analysis was conducted on the basis of a numerical solution of the heat conduction equation. The function of thermal sources in the heat conduction equation was calculated according to the results of measuring the pressure distribution in the focal region of the heating transducer. The experimental data obtained agree well with the results of simulation and demonstrate a fundamental possibility of using the proposed ultrasonic technique for remote temperature measurements.  相似文献   

13.
Theoretical calculations have predicted that individual Single-Walled Carbon Nanotubes (SWNT) have extremely high thermal conductivity (around 6.6 × 104 W/m-K). The feasibility of constructing practical devices using the above mentioned properties, is critically dependent on the ability to synthesize high-thermal-conducting films. Highly conducting films would be of great use as heat sinks for the next generation of integrated chips. Excessive heating is currently a very serious problem in the endeavor for achieving faster and smaller chips. Since it is still not possible to perfectly align SWNT in the macroscopic scale, the thermal properties of the nano-films are therefore expected to have a statistical effect and thus lower than the intrinsic thermal conductivity of a single nanotube. Also the thermal conductivity perpendicular to the tube direction is more significant from a practical point of view. Multi-Walled Carbon Nanotubes (MWNT) were synthesized by Chemical Vapor Deposition (CVD) technique and subsequently characterized. The thin MWNT films were deposited by a solution casting technique over a metallic substrate. The off-axis thermal properties of these nano-films were studied by AC-calorimetry studies. In this method, the sample is heated by an AC source and the measurement of the relaxation rate is used to determine the thermal properties. This technique is well established for studying the thermal properties of complex fluids. Our results are contrasted with other thermal conductivity measurements intrinsic and bulk carbon nanotube samples. We have also measured off-axis thermal properties of nano-films synthesized from more crystalline SWNT samples and have compared this result with that of the MWNT-film. A model to explain the thermal conduction for our system is proposed. George Muench: Presently at the Department of Physics, University of New Haven, West Haven, CT-06516, USA  相似文献   

14.
Transient deformation of thin metal sheets during pulsed laser forming   总被引:2,自引:0,他引:2  
The transient deformation of thin grade 304 stainless steel metal sheets heated by a single pulse of a CO2 laser beam is simulated in this paper. The laser beam is assumed to be line-shaped and the problem is treated as three-dimensional thermo-elastoplastic. The temperature field, deformation pattern, stress–strain states and the residual stress distribution of the specimens have been calculated numerically and the transient response of the bending angle has been validated by experiments. Good agreement has been obtained between the numerical simulation and the experiments under various operating conditions. The numerical study reveals that a high temperature gradient exists for a positive bending angle and a low one for a negative angle. It transpires that the mechanisms of pulsed laser forming are dependent mainly upon the laser power, the heating time, the clamping arrangement, as well as the geometry, the thermal properties and the original stress states of the specimen.  相似文献   

15.
Dilute aqueous solutions of alcohols with a high number of carbon atoms can be considered as self-rewetting fluids due to their properties associated to an anomalous dependency of the surface tension with temperature in some ranges of concentrations. In this paper research activities focused on numerical simulations and laboratory experiments of the behaviour of a thin layer of liquid subject to a horizontal thermal gradient. The investigated liquids include ordinary liquids and water/alcohols mixtures. Physical properties measurements, in particular surface tension and refractive index, are also presented. Flow visualization and interferometric analysis have been carried out using optical diagnostic systems.  相似文献   

16.
An experiment devoted to the heat flux estimation in a workpiece during a machining process by turning is presented. The method is based on temperature measurement from thermocouples embedded in the workpiece, close to the heated surface. A model that expresses the heat flux according to the temperature at the sensors is developed. The stationary and linearity assumptions are used in order to decompose the three-dimensional original problem into two bi-dimensional problems. This decomposition can be realized given the difference between the cutting speed and feed velocity in two orthogonal directions. The temperature on the machined surface is calculated from the estimated heat flux and the heat transfer model in the workpiece. The application concerns hard steel machining, using a CBN insert tool. Three parameters are placed into evidence from this application: the temperature magnitude on the machined surface, the thermal gradient in the workpiece, and the `thermal persistence' that represent the heating time of the machined surface. This study leads to a better understanding of the influence of temperature during a hard steel turning process.  相似文献   

17.
张国斌 《物理》2000,29(7):416-419
光声(光热)效应是由于物质吸收一强度随时间变化的光束而被时变加热时所引起的一系列热效应和声效应,研究了这些热效应和声效应,可以获得物质的热学和学学性质,光声技术正是探测由于吸收光辐射后样品的微小温度变化所引起的周围气体压力变化,具有灵敏度高、操作方便、应用广泛等独特的优点,已成为研究物质光谱特性、热学性质等的独特有力手段,文章主要介绍了光声技术在固体热扩散率测量中的原理及常规应用方法。  相似文献   

18.
《Composite Interfaces》2013,20(4-6):319-328
In this work, the effects of electron acceptor–donor modification on the surface properties of SiC were investigated in the mechanical interfacial properties of carbon fibers-reinforced SiC-impregnated epoxy matrix composites. The surface properties of the SiC were determined according to acid/base values and FT-IR, and contact angle measurements. The thermal and mechanical interfacial properties of the composites were evaluated using a thermogravimetric analysis, critical strain energy release rate mode II (G IIC), and impact strength testing. As a result, the electron acceptor-treated SiC had a higher acid value and polar component in surface free energy than did the untreated SiC or the electron donor-treated SiC. The G IIC and impact strength mechanical interfacial properties of the composites had been improved in the specimens treated by acidic solutions due to the good wetting and a high degree of adhesion with electron donor characteristic epoxy resins.  相似文献   

19.
M. Laguës 《Surface science》1974,45(2):432-440
The photoemissive properties of lithium activated silicon are studied in the temperature range 25°C to 500°C. The Li activation is obtained by surface segregation of bulk dissolved Li. The Li layer seems to be highly stable when Si is heated up to 500°C. On the other hand, the photoemission quantum yield changes with temperature. In order to get complementary information, work function measurements are performed on the same samples. Both photoemission and work function measurements allow us to describe the whole energy picture at the surface of n and p type samples and lead to the conclusion that band bending effect is responsible for the thermal dependence of the yield.  相似文献   

20.
Auger analysis and reflection high energy electron diffraction (RHEED) have been used to study the UHV thermal cleaning procedure of different chemically treated (001) GaAs surfaces when heated in ultra high vacuum. It is shown that the ultimate surface composition of the substrate critically depends on the nature and the thickness of the oxide layer formed during chemical treatment. The oxygen removal mechanism has been studied and a comparative analysis of AES and RHEED observations has been drawn. A low residual carbon coverage cleaning procedure is fully investigated and it results that a carbon coverage as low as ∼6×10−2 monolayer induces surface faceting by heating the GaAs substrate at temperatures higher than 570°C. A (001) GaAs surface heated in an arsenic flux up to 570°C is As-stabilized and (411) facets appear at a temperature ranged between 575 and 585°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号