首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用周期轨道理论,我们计算了在不同情况下,一个粒子在二维谐振子势中存在和不存在磁通量时的量子能级密度.重点讨论了磁通量对量子能级密度的影响.计算结果表明:当二维谐振子势的频率比值是有理数时,量子能级是分立的,能级密度中的每一条峰正好对应一个量子能级.然而,当频率比是无理数时,能级密度发生振荡,当加上磁通量后,振荡减小.这可以看作是Aharonov-Bohm效应的结果.  相似文献   

2.
The quantum density of states of the Henon-Heiles potential displays a pronounced beating pattern. This has been explained by the interference of three isolated classical periodic orbits with nearby actions and periods. A singular magnetic flux line, passing through the origin, drastically alters the beats even though the classical Lagrangian equations of motion remain unchanged. Some of the changes can be easily understood in terms of the Aharonov-Bohm effect. However, we find that the standard periodic orbit theory does not reproduce the diffraction-like quantum effects on those classical orbits which intersect the singular flux line, and argue that corrections of relative order variant Planck's over 2pi are necessary to describe these effects. We also discuss the changes in the distribution of nearest-neighbor spacings in the eigenvalue spectrum, brought about by the flux line. (c) 1995 American Institute of Physics.  相似文献   

3.
Suzhi Wu  Yu-qiang Ma 《Physics letters. A》2008,372(13):2326-2331
Persistent current and transmission probability in the Aharonov-Bohm (AB) ring with an embedded quantum dot (QD) are studied using the technique of the scattering matrix. For the first time, we find that the persistent current can arise in the absence of magnetic flux in the ring with an embedded QD. The persistent current and the transmission probability are sensitive to the lead-ring coupling and the short-range potential barrier. It is shown that increasing the lead-ring coupling or the short-range potential barrier causes the suppression of the persistent current and the increasing resonance width of the transmission probability. The effect of the potential barrier on the number of the transmission peaks is also investigated. The dependence of the persistent current and the transmission probability on the magnetic flux exhibits a periodic property with period of the flux quantum.  相似文献   

4.
Optical properties of a two-dimensional quantum ring with pseudopotential in the presence of an external magnetic field and magnetic flux have been theoretically investigated. Our results show that both of the pseudopotential and magnetic field can affect the third non-linear susceptibility and oscillator strength. In addition, we found that the oscillator strength and the absolute value of the resonant peak of the linear, non-linear and total absorption coefficient demonstrates the Aharonov-Bohm oscillation with magnetic flux, moreover, changes in confinement potential can influence the Aharonov-Bohm oscillation in peak while the resonant peak value of the linear, non-linear and total refractive index changes decreases as magnetic flux increases.  相似文献   

5.
We investigate the magnetic properties of the lattice of non-interacting quantum rings using the 2D rotator model. The exact analytic expressions for the free energy as well as for the magnetization and magnetic susceptibility are found and analyzed. It is shown that such a system can be considered as a system with antiferromagnetic-like properties. We have shown also that all observable quantities in this case (free energy, entropy, magnetization) are periodic functions of the magnetic flux through the ring's area (as well known, such a behavior is typical for the Aharonov-Bohm effect). For the lattice of quantum rings with two different geometric parameters we investigate the ordinary compensation points (“temperature compensation points”, i.e. points at which the magnetization vanishes at fixed values of the magnetic field strength). It is shown that the positions of compensation points in the temperature scale are very sensitive to small changes in the magnetic field strength.  相似文献   

6.
He Gao 《Physics letters. A》2008,372(35):5695-5700
We have investigated the mesoscopic transport properties of a quantum dot embedded Aharonov-Bohm (AB) interferometer applied with a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunneling current is sensitive to the spin-flip effect. The spin-flipped electrons tunneling from the direct channel and the resonant channel interfere with each other to form spin-polarized tunneling current components. The non-resonant tunneling (direct transmission) strength and the AB phase φ play important roles. When the non-resonant tunneling (background transmission) exists, the spin and charge currents form asymmetric peaks and valleys, which exhibit Fano-type line shapes by varying the source-drain bias voltage, or gate voltage. The AB oscillations of the spin and charge currents exhibit distinct dependence on the magnetic flux and direct tunneling strength.  相似文献   

7.
Wave functions of low-energy quasiparticle subgap states in d-wave superconducting rings, threaded by an Aharonov-Bohm magnetic flux, are found analytically. The respective energies are closest to the midgap position at small magnetic fluxes and deviate from the Fermi surface due to the Doppler shift, produced by the supercurrent. The Doppler-shifted zero-energy states result in a paramagnetic response of the ring at small fluxes. The states exist only for even angular momenta of the center of mass of Cooper pairs, in agreement with recent numerical studies of the problem. This macroscopic quantum effect in d-wave rings results in broken h/2e periodicity, retaining only the h/e periodic behavior of the supercurrent with varying magnetic flux.  相似文献   

8.
By applying the slave boson technique, we have studied the electron transport through double-dot Aharonov-Bohm interferometer in the Kondo regime. For the system with symmetric quantum dots, the linear conductance is shown to be enhanced by Kondo effect, but it is suppressed in the deep dot level regime in the presence of nonzero magnetic flux. The Aharonov-Bohm oscillations of the conductance are also investigated.  相似文献   

9.
A tunnel current through a heterostructure whose barrier contains quantum rings is calculated. The plane of the rings is parallel to the barrier interface. In a magnetic field perpendicular to this plane, a tunnel current at a fixed bias experiences Aharonov-Bohm oscillations under the variation of magnetic flux through a ring; however, these oscillations are not strictly periodic.  相似文献   

10.
白继元  贺泽龙  李立  韩桂华  张彬林  姜平晖  樊玉环 《物理学报》2015,64(20):207304-207304
设计一个两端线型双量子点分子Aharonov-Bohm (A-B)干涉仪. 采用非平衡格林函数技术, 理论研究无含时外场作用下的体系电导和引入含时外场作用下的体系平均电流. 在不考虑含时外场时, 调节点间耦合强度或磁通可以诱导电导共振峰劈裂. 控制穿过A-B干涉仪磁通的有无, 实现了共振峰电导数值在0与1之间的数字转换, 为制造量子开关提供了一个新的物理方案. 同时借助磁通和Rashba自旋轨道相互作用, 获得了自旋过滤. 当体系引入含时外场时, 平均电流曲线展示了旁带效应. 改变含时外场的振幅, 实现了体系平均电流的大小与位置的有效控制, 而调节含时外场的频率, 则可以实现平均电流峰与谷之间的可逆转换. 通过调节磁通与Rashba自旋轨道相互作用, 与自旋相关的平均电流亦得到有效控制. 研究结果为开发利用耦合多量子点链嵌入A-B 干涉仪体系电输运性质提供了新的认知. 上述结果可望对未来的量子器件设计与量子计算发挥重要的指导作用.  相似文献   

11.
With the help of the nonequilibrium Green's function method, the quantum pump in an Aharonov-Bohm interferometer with a quantum dot driven by an ac field are studied theoretically. The ac field applied to the quantum dot may give rise to a pumped charge current at zero-bias voltage in the presence of a nonzero magnetic flux. The possibility of manipulating the pumped charge current is explored by tuning the dot level, the magnetic flux, the coupling strength and the ac field. By making use of various tunings, the magnitude and direction of the pumped charge current can be well controlled. Furthermore, the possibility to generate a pure spin current in the presence of the Rashba spin-orbit interaction has been discussed, which provides an idea for the design of a spin pump electrically.  相似文献   

12.
We study the spin-dependent electron transport through parallel coupled quantum dots (QDs) embedded in an Aharonov-Bohm (AB) interferometer connected asymmetrically to leads. Both the Rashba spin-orbit interaction (RSOI) inside one of the QDs, which acquires a spin-dependent phase factor in the tunnel-coupling strengths when the electrons flow through this arm of the AB ring, and an inhomogeneous magnetic flux penetrating the structure are taken into account. Due to the existence of the RSOI induced phase factor, magnetic flux and the interdot coupling, a spin-dependent Fano effect will arise. We pay special attention on the properties of the local density of states and the conductance when the electron phase factor is close to integer multiplies of a quantum of flux. It is shown that the roles and lifetimes of the bonding and antibonding states of the two spin components are very sensitive to the phase factor and can be well controlled accordingly. This manipulation of the spin degree of freedom relies on the existence of RSOI but can be fulfilled even when its strength is very weak. The proposed structure can be easily realized with present technology and might be of practical applications in spintronics devices and quantum computing.  相似文献   

13.
Y.S. Liu  X.F. Yang  Y.J. Xia 《Physics letters. A》2008,372(18):3318-3324
In this Letter, we studied the electronic transport through a parallel-coupled double quantum dot (DQD) molecule including impurity effects at zero temperature. The linear conductance can be calculated by using the Green's function method. An obvious Fano resonance arising from the impurity state in the quantum dot is observed for the symmetric dot-lead coupling structure in the absence of the magnetic flux through the quantum device. When the magnetic flux is presented, two groups of conductance peaks appear in the linear conductance spectra. Each group is decomposed into one Breit-Wigner and one Fano resonances. Tuning the system parameters, we can control effectively the shapes of these conductance peaks. The Aharonov-Bohm (AB) oscillation for the magnetic flux is also studied. The oscillation period of the linear conductance with π, 2π or 4π may be observed by tuning the interdot tunneling coupling or the dot-impurity coupling strengths.  相似文献   

14.
We present a theoretical study of the conductance in an Aharonov-Bohm interferometer containing two coupled quantum dots. The interdot tunneling divides the interferometer into two coupled subrings, where opposite magnetic fluxes are threaded separately while the net flux is kept zero. Using the Green function technique we derive the expression of the linear conductance. It is found that the Aharonov-Bohm effect still exists, and when the level of each dot is aligned, the exchange of the Fano and Breit-Wigner resonances in the conductance can be achieved by tuning the magnetic flux. When the two levels are mismatched the exchange may not happen. Further, for some specific asymmetric systems where the coupling strengths between the two dots and the leads are not equal, the flux can change the Fano resonance into an antiresonance, which is absent in symmetric systems.  相似文献   

15.
Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields (>55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the tube-threading magnetic flux, which breaks the time-reversal symmetry and lifts the valley degeneracy. This field-induced symmetry breaking thus overcomes the Coulomb-induced intervalley mixing which is predicted to make the lowest exciton state optically inactive (or dark).  相似文献   

16.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

17.
We use tunnel current spectroscopy to investigate the quantum states of two GaAs quantum wells coupled by a low (100 meV) (AlGa)As tunnel barrier. A high tilted magnetic field is used to generate strongly chaotic electron motion in the two wells which act as coupled chaotic ‘stadia'. The effect of the tunnel barrier on the dynamics of the system depends on the magnitude of the applied bias voltage V. For V375 mV, the central potential barrier acts as a perturbation which modifies the trajectories of selected periodic orbits in the quantum well. Scattering off the central barrier also generates new periodic orbits involving multiple collisions on all three barriers. These orbits ‘scar' distinct sets of eigenstates which generate periodic resonant peaks in the current–voltage characteristics of the device. When the device is biased such that the injected electrons just surmount the central barrier, our calculations reveal novel hybrid scarred states with both stable and chaotic characteristics.  相似文献   

18.
The Aharonov-Bohm effect on multiwall carbon nanotubes has been studied under conditions of resistance with decreasing temperature as an inverse power function, which precede strong carrier localization. A periodic contribution with a period of 18 T corresponding to the magnetic flux quantum ħc/e per nanotube cross section has been revealed in the longitudinal magnetoresistance. The result points to the possibility of the ballistic motion of the carriers over the sample perimeter under conditions close to their strong localization in the longitudinal direction.  相似文献   

19.
Electron transport through a linear array of nanoscopic rings with six quantum dot sites per ring is investigated in the presence of an external magnetic flux producing an Aharonov-Bohm phase shift effect. A tight-binding model is employed to analytically calculate the transmission as a function of electron energy, external flux, and inter-site coupling parameters. Current vs. voltage relationships of the ring system are computed using a standard scattering theory of transport and shown to modulate between semiconductor and ohmic characteristics. System parameters are adjusted in order to study the effects of a longitudinal strain on the transmission properties of the linear multiple-ring array. Longitudinal strain is modeled with a Slater-Koster type theory and is demonstrated to affect the transmission properties primarily by narrowing the transmission bands and opening up additional bandgaps in the band structure. In addition, a universal resonant transmission condition as a function of flux is extended to show that the application of strain causes the resonant transmission peaks to converge towards one-half of a flux quantum.  相似文献   

20.
Gaussian linking of a semiclassical path of a charged particle with a magnetic flux tube is responsible for the Aharonov-Bohm effect, where one observes interference proportional to the magnitude of the enclosed flux. We construct quantum mechanical wave functions where semiclassical paths can have second order linking to two magnetic flux tubes, and show there is interference proportional to the product of the two fluxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号