首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
H.K. Kim 《Applied Acoustics》2010,71(7):607-615
The influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete is systematically investigated in the present study. Three levels of cement flow (80%, 110%, and 140%) and five types of aggregates (normal aggregates of 8-13 mm and 13-19 mm and lightweight aggregates of 4-8 mm, 8-12 mm, and 12-19 mm) are used, and effects of the application of AE admixtures in paste were also studied. Single-layered and double-layered porous concrete specimens are fabricated to examine the effect of different layer configuration on the acoustic characteristics. For the purpose of comparison, the void ratio, compressive strength, and sound absorption coefficient of the specimens are used as evaluation parameters. Based on the findings of the study, a sound absorbing porous concrete with a maximum absorption coefficient of approximately 1.00 is developed, and the minimum absorption coefficient of the ‘double-layered porous concrete’ structure is shown to be more than 0.60 with a frequency of 400 Hz or above, considering the tolerant error.  相似文献   

2.
Trtnik G  Kavcic F  Turk G 《Ultrasonics》2009,49(1):53-60
Ultrasonic pulse velocity technique is one of the most popular non-destructive techniques used in the assessment of concrete properties. However, it is very difficult to accurately evaluate the concrete compressive strength with this method since the ultrasonic pulse velocity values are affected by a number of factors, which do not necessarily influence the concrete compressive strength in the same way or to the same extent. This paper deals with the analysis of such factors on the velocity-strength relationship. The relationship between ultrasonic pulse velocity, static and dynamic Young’s modulus and shear modulus was also analyzed. The influence of aggregate, initial concrete temperature, type of cement, environmental temperature, and w/c ratio was determined by our own experiments. Based on the experimental results, a numerical model was established within the Matlab programming environment. The multi-layer feed-forward neural network was used for this purpose. The paper demonstrates that artificial neural networks can be successfully used in modelling the velocity-strength relationship. This model enables us to easily and reliably estimate the compressive strength of concrete by using only the ultrasonic pulse velocity value and some mix parameters of concrete.  相似文献   

3.
粉煤灰、锂渣和钢渣作为工业废渣,等质量替代水泥时其利用率往往较低,为了大量地使用这些工业废渣。采用X射线单晶衍射仪、同步热分析仪、傅里叶红外光谱仪和电镜扫描分析方法,研究了锂渣、粉煤灰和钢渣替代细集料后砂浆的水化产物、光谱特性、微观形貌,并探讨了砂浆抗折/抗压强度随替代率(0%,30%,50%,70%和100%)增长的变化规律。研究结果表明:四种浆体的水化产物主要为CSH凝胶、Ca(OH)2、少量的AFt和未水化的颗粒(Al2O3,SiO2),其中水泥-锂渣浆体、水泥-粉煤灰浆体、水泥-钢渣浆体中的未水化颗粒还含有一定的Li2O·Al2O3·SiO2,Ca1.56SiO3.5·xH2O和RO phas。四种浆体以3 467,3 438,2 923,2 348,1 638,1 429,1 111,1 000,768,696和462 cm-1为特征峰,但其峰强有所不同,其活性也不同,参与二次水化反应的程度也不同,因此,水泥-钢渣浆体中Ca(OH)2的含量明显高于水泥-粉煤灰浆体和水泥-锂渣浆体的现象;但不管是矿物掺合料替代水泥还是细集料,都在浆体中发挥着火山灰活性和填充作用。含三种100%矿物掺合料砂浆的抗折强度和抗压强度均高于纯水泥砂浆,分别(锂渣、粉煤灰和钢渣)约高37.77%/51.88%,14.71%/11.70%,91.95%/34.88%,但其达到峰值的掺量不同。因此,采用矿物掺合料替代细集料是可行的,能大幅度提高工业废渣在混凝土行业中的使用,且能达到节能减排的效果。  相似文献   

4.
高浓度纤维增强材料介电特性计算方法   总被引:2,自引:0,他引:2       下载免费PDF全文
廖意  蔡昆  张元  王晓冰 《物理学报》2016,65(2):24102-024102
针对复合材料的微观结构非均匀和各向异性特点带来的数值方法计算慢、内存消耗大的问题,利用均匀化方法计算纤维增强复合材料的等效电磁参数.采用了纤维低体积添加比至高体积添加比的迭代方法,同时提出了一个描述材料微观结构的修正的特征长度,将现有的均匀化方法推广至非准静态(微波频段)条件下高纤维浓度情况.提出的修正的均匀化模型可直接用于反射系数、屏蔽效能等计算,其屏蔽效能与实际微观结构复合材料的数值仿真结果进行了对比,验证了提出的等效电磁参数计算公式的有效性和频率适用范围.  相似文献   

5.
The present work is directed to investigate the contribution of adding barite aggregates to cement as a shielding material for radioactive wastes disposal facilities. The percentages of barite from 5% up to 20% mixed with cement with different grain sizes were examined. Mechanical and physical properties such as compressive strength, wet and dry densities, water absorption, and porosity have been investigated. The thermogravimetric analysis and X-ray diffraction were used to examine the thermal stability and the characterizations of studied samples, respectively. The linear attenuation coefficient, mean free path, half value layer, and transmission fraction were evaluated. All the nuclear shielding parameters revealed the uppermost values for cement mixed with 5% barite of size range 250–600?µm. The attenuation coefficient of the investigated samples displayed an increase by more than 125% than that of neat cement.  相似文献   

6.
The interfacial transition zone (ITZ) between aggregates and cement paste in cementitious materials is a crucial element in mechanical and transport systems. Computer simulation by the SPACE system is used to approach this problem in the present paper. For the particle-packing phenomenon in the fresh state of concrete, the SPACE system relies on a dynamic generation algorithm, reflecting the production conditions of concrete. Hence, structure of the model cement has been proven more realistic than can be achieved by random generator-based system.A natural phenomenon in the ITZ around aggregate particles is size segregation leading to different gradients in porosity, particle size and surface area. Size segregation implies the difference size fractions in the binder mixture to have peak values in their densities on different distances from the aggregate surface. Structural evolution of the ITZ is stereologically quantified with the help of composition and configuration parameters in the fresh and hardened states of concrete.The addition of mineral admixtures is a successful approach to improving the ITZ microstructure. Experiments demonstrated the blending efficiency to be higher for coarser grained Portland cement (PC), due to the positive effect exerted by gap grading, i.e. by having distinctly different size ranges of particles. This is confirmed by computer simulation of the ITZ microstructure in model concretes made with blended cements. In addition, it is very important in concrete production to achieve good workability conditions to ensure sufficient dispersion of the fine rice husk ash (RHA) particles and proper migration of them into the ITZ through the structure network of large cement particles.  相似文献   

7.
Characterization and hardening of concrete with ultrasonic testing   总被引:2,自引:0,他引:2  
In this study, we describe a technique which can be used to characterize some relevant properties of 26 cylindrical samples (15 x 30 cm2) of concrete. The characterization has been performed, according to Spanish regulations in force, by some destructive and ultrasound-based techniques using frequencies of 40 kHz. Samples were manufactured using different water/cement ratios (w/c), ranging from 0.48 to 0.80, in order to simulate different values of compressive strength at each sample. We have correlated the propagation velocity v of ultrasonic waves through the samples to compressive strength R values. As some other authors remark, there exists an exponential relationship between the two above parameters. We have found that a highly linear relationship is present between R and w/c concentration at the samples. Nevertheless, when the same linear model is adopted to describe the relationship between v and w/c, the value of r decreases significantly. Thus, we have performed a multiple regression analysis which takes into account the impact of different concrete constituents (water, cement, sand, etc.) on ultrasound propagation speed. One of the most relevant practical issues addressed in our study is the estimation of the hardening curve of concrete, which can be used to quantify the viability of applying the proposed method in a real scenario. Subsequently, we also show a detailed analysis of the temporal evolution of v and R through 61 days, beginning at the date where the samples were manufactured. After analyzing both parameters separately, a double reciprocal relationship is deduced. Using the above parameters, we develop an NDE-based model which can be used to estimate hardening time of concrete samples.  相似文献   

8.
Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.  相似文献   

9.
Concrete can be viewed as granular materials at the mesoscopic level. A specific distribution of aggregate particles in boundary layers, known as the wall effect, plays an important role in the mechanical properties and durability of concrete. However, the detailed and systematic experimental and simulated data about the wall effect of concrete is hardly adequate yet. Specially, the modeling study of spherical and two-dimensional (2D) elliptical aggregates distribution for the wall effect has been focused on in previous work, little is known about three-dimensional (3D) ellipsoidal aggregates. In the present work, based on a mesostructure model of concrete, the wall effect of concrete is quantified by configuration parameters such as the volume fraction, the specific surface area and the meaning free spacing of the solid phase. In addition, the influences of ellipsoidal particle size distribution (EPSD), shape and volume fraction (VfVf) of ellipsoidal aggregates on the configuration parameters are evaluated by stereological methods and serial section analysis technique. Furthermore, the effect mechanisms of EPSD, shape and VfVf are analyzed and discussed in this paper. The reliability of the statistical results is verified by experimental data and theoretical analytical results.  相似文献   

10.
Soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame is modeled with a PAH-based soot model and an advanced sectional aerosol dynamics model. The mass range of solid soot phase is divided into 35 discrete sections and two variables are solved for in each section. The coagulation kernel of soot aggregates is calculated for the entire Knudsen number regime. Radiation from gaseous species and soot are calculated by a discrete-ordinate method with a statistical narrow-band correlated-k based band model. The discretized sectional soot equations are solved simultaneously to ensure convergence. Parallel computation with the domain decomposition method is used to save computational time. The flame temperature, soot volume fraction, primary particle size and number density are well reproduced. The number of primary particles per aggregate is overpredicted. This discrepancy is presumably associated with the unitary coagulation efficiency assumption in the current sectional model. Along the maximum soot volume fraction pathline, the number-based and mass-based aggregate size distribution functions are found to evolve from unimodal to bimodal and finally to unimodal again. The different shapes of these two aggregate size distribution functions indicate that the total number and mass of aggregates are dominated by aggregates of different sizes. The PAH-soot condensation efficiency γ is found to have a small effect on soot formation when γ is larger than 0.5. However, the soot level and primary particle number density are significantly overpredicted if the PAH-soot condensation process is neglected. Generally, larger γ predicts lower soot level and primary particle number density. Further study on soot aggregate coagulation efficiency should be pursued and more experimental data on soot aggregate structure and size distribution are needed for improving the current sectional soot model and for better understanding the complex soot aggregation phenomenon.  相似文献   

11.
Cement paste is formed through a process called hydration by combining water with a cementitious material. Concrete, the worlds most versatile and most widely used material, can then be obtained when aggregates (sand, gravel, crushed stone) are added to the paste. The quality of hardened concrete is greatly influenced by the water confined in the cementitious materials and how it is transmitted through cracks and pores. Here we demonstrate that the water transport in cracks and capillary pores of hardened cement pastes can be approximately modeled by simple equations. Our findings highlight the significance of arresting the development of cracks in cementitious materials used in repository barriers. We also show that neutron scattering is an advantageous technique for understanding how water transmission is effected by gel pore structures. Defining measurable differences in gel pores may hold a key to prediction of the reduction of water transport through cement barriers.  相似文献   

12.
Ultrasonic pulse velocity (UPV) test is one of the most popular non-destructive techniques used in the assessment of the mechanical properties of concrete or rock materials. In this study, the effects of binder type/dosage, water to cement ratio (w/c) and fines content (<20 μm) of the tailings on ultrasonic pulse velocity (UPV) of cemented paste backfill (CPB) samples were investigated and correlated with the corresponding unconfined compressive strength (UCS) data. A total of 96 CPB samples prepared at different mixture properties were subjected to the UPV and UCS tests at 7, 14, 28 and 56-days of curing periods. UPV and UCS of CPB samples of ordinary Portland cement (CEM I 42.5 R) and sulphate resistant cement (SRC 32.5) initially increased rapidly, but, slowed down after 14 days. However, UPV and UCS of CPB samples of the blast furnace slag cement (CEM III/A 42.5 N) steadily increased between 7 and 56 days. Increasing binder dosage or reducing w/c ratio and fines content (<20 μm) increased the UCS and UPV of CPB samples. UPV was found to be particularly sensitive to fines content. UCS data were correlated with the corresponding UPV data. A linear relation appeared to exist between the UCS and UPV of CPB samples. These findings have demonstrated that the UPV test can be reliably used for the estimation of the strength of CPB samples.  相似文献   

13.
《Composite Interfaces》2013,20(5-7):571-579
The mechanical properties of hydroxyapatite related macroporous biocomposites (MPBs) are influenced by a number of factors, such as the pore size, the filler content and the properties of the matrix and the inclusion. Failure often occurs when the strength of the implant cannot bear the applied mechanical load. In this study, the effects of filler content on the mechanical properties of MPBs have been investigated. A finite element (FE) unit cell model of a macroporous hydroxyapatite–polyetheretherketone (HA–PEEK) biocomposite structure with uniform and interconnected pores has been constructed. In the FE model, the HA particles were assumed to have random distribution, and particle volume fraction would be varied in the PEEK matrix. The material behaviours of both HA and PEEK have been implemented in the ABAQUS finite element code. HA was modelled to exhibit elastic behaviour and undergo plastic softening to a residual strength when a critical stress was reached, while the PEEK matrix would follow elastic–plastic behaviour. The macroscopic compressive stress–strain relations of the macroporous biocomposite structures have been predicted. Increasing particle volume fraction could lead to an increase in the compressive elastic modulus of the structures but a reduction in the compressive strength. The von Mises stress distribution and the effect of stress concentration in the structures with different filler content are also discussed. The proposed model could provide macro-structural and microscopic information of the macroporous biocomposite structure to the designers in order to facilitate the fabrication of this kind of structure with optimum mechanical properties.  相似文献   

14.
The size and distribution of pores have been studied through the melting behavior of water confined in white cement samples by1H nuclear magnetic resonance cryoporometry. It is found that the sample cured at 298 K shows a considerably coarser pore structure in the range of pores from 1 to 15 nm when compared with the samples cured at 278 K. With the addition of the Sika Rapid 2 antifreeze admixture in the cement cured at 278 K, an increase of pores between 5 and 15 nm and a more homogeneous distribution of small pores from 1 to 5 nm is observed when compared with cement cured at the same temperature but without the antifreeze additive. The positive influence of Sika Rapid 2 antifreeze admixture on the mechanical properties of cement cured at a lower temperature was also found through the compressive strength measurements performed for the studied cement samples as a function of the curing age.  相似文献   

15.
ABSTRACT

The influence of silanised silica fume addition on the pore size distribution and wettability of white cement paste was investigated using T1–T2 correlation nuclear magnetic resonance (NMR) relaxometry. Surface silanisation of silica fume particles was achieved by the hydrolysis reaction of APTES (3-Aminopropyltriethoxysilane) and condensation of the silanol functional groups on the surface. The methods used for characterisation of the silanised silica fume particles were scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). By adding silanised silica fume to the cement paste, the accessibility of water molecules to the porous system becomes restricted, leading to a lower permeability in comparison with the unmodified cement paste. Differential scanning calorimetry (DSC) measurements on the cement pastes saturated with Octamethylcyclotetrasiloxane confirm also that the size of inter-C–S–H and capillary pores is not influenced by the addition of silica fume in a detectable manner.  相似文献   

16.
Yielding strength of metallic glasses in the uniaxial tensile and compressive tests is scale-dependent, which is attributed to the self-similar distribution of atomic cluster and free volume in the work. In contrast with the Weibull statistical theory previously employed in scaling phenomena of metallic glasses, fractal scaling laws are for the first time applied to describe the size effect inherent to the material disorder. Especially, the Multifractal Scaling Law (MFSL) originally proposed for quasi-brittle materials is used to interpret some experimental data in the literature. The best-fitted parameters (fyfy and lch) from the MFSL are in good consistency with the bulk yielding strength and the shear band size of metallic glasses observed in the alternative approaches or experiments. The fractal size effect laws provide insight into not only the scaling phenomena, but also further engineering strength predictions and designs.  相似文献   

17.
 采用液压试验机和Φ100 mm分离式霍普金森压杆实验装置,研究了体积分数为0.1%、0.2%和0.3%的陶瓷纤维混凝土的准静态和动态力学性能,分析了陶瓷纤维的增强机理,并将其与相同纤维体积分数的碳纤维混凝土进行对比。结果表明:陶瓷纤维改善了普通硅酸盐混凝土的准静态力学性能;纤维体积分数为0.3%时,抗压强度提高15.0%,劈裂抗拉强度提高8.5%,抗折强度提高12.7%。冲击荷载作用下,陶瓷纤维混凝土的动态抗压强度和比能量吸收随平均应变率的增加近似线性增长;体积分数为0.2%时,陶瓷纤维的增强、增韧效果最佳。陶瓷纤维对普通硅酸盐混凝土的增强、增韧效果总体上优于碳纤维。  相似文献   

18.
Acoustical properties of aerated autoclaved concrete   总被引:1,自引:0,他引:1  
This work analyses acoustic qualities of autoclaved aerated concrete (AAC). Three the most widely used types of AAC are chosen for the analysis: gas cement concrete, gas cement concrete with combined binder (Portland cement and lime), and foam cement concrete. The procedure and technique of the materials’ formation is presented in this work. The evaluation of acoustic qualities of AAC is based on the material’s air permeability and porosity (i.e., ratio of the volume of the interconnected pores to the total volume of pores). For this purpose the measurements obtained by an acoustic interferometer are used. The results of the experiment show that regression equations for the AAC types, which density ranges from 250 to 500 kg/m3, may be used to estimate the materials’ normal incidence absorption coefficient values, which depend on the air permeability and porosity. Results show that absorption coefficient of not specially treated AAC is rather low. According to the measurements obtained in a special reverberation room of 202 m3, a sound absorption coefficient may increase up to 0.6, provided that slits of Helmholtz resonator’s type are made in the slabs of AAC gas cement concrete with combined binder.  相似文献   

19.
The axial and radial dimensions of a fiber are known to be key factors with respect to the mechanical stress necessary to promote failure, this being known as the size effect. Usually different methods are used to quantify the two types of size effects: Linear elastic fracture mechanics (lefm) and related schemes provide the theoretical basis for the effect of diameter variability upon strength whereas statistical theories, generally based upon the Weibull probability distribution combined with the weakest-link theorem, describe length effects. Here we show that simple modifications of the classical Poisson/Weibull form yield a new failure probability function which provides a more adequate explanation for diameter effects on strength in polydiacetylene fibers, and also resolves in a satisfactory way a current problematic issue inherent to the Weibull/weakest-link model. A maximum likelihood estimation procedure is presented for the evaluation of the most appropriate parameters of the proposed failure probability function.  相似文献   

20.
This paper describes the so called interfacial transition zone—ITZ—in concrete. This is the region of the cement paste around the aggregate particles, which is perturbed by the presence of the aggregate. Its origin lies in the packing of the cement grains against the much larger aggregate, which leads to a local increase in porosity and predominance of smaller cement particles in this region. The ITZ is region of gradual transition and is highly heterogeneous, nevertheless the average microstructural features may be measured by analysis of a large numbers of backscattered electron images of polished concrete samples. Such measurements show that the higher porosity present initially is significantly diminished by the migration of ions during hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号