首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结构位移摄像测量系统的设计与实现   总被引:1,自引:0,他引:1  
张小虎  周翔  周剑  尚洋  于起峰 《应用光学》2009,30(4):622-625
针对飞机等大型工程结构的位移测量需求,设计实现了结构位移摄像测量系统.该系统采用多台数字式摄像机从不同方向拍摄飞机机身、机翼表面的人工合作标志点,在试验前对各个摄像机的参数进行精确标定,试验过程中实时分析各摄像机采集到的序列图像,检测跟踪得到标志点在图像上的二维像点坐标,根据像机参数和标志点二维像点坐标交会计算得到各标志点的三维坐标,即可得到整个结构的位移与变形参数.结构位移结果可进行三维动画显示,也可随时查看各标志点的位移曲线.精度测试结果表明该系统位移测量误差标准差小于1 mm,相对误差小于1%.该系统已成功应用于飞机机翼位移测量中.  相似文献   

2.
为了实现空间运动目标姿态参数的高精度测量,采用一种基于光束向量的姿态参数测量系统.该系统在运动目标上安装直线光束作为合作目标,利用高速摄像机记录光束投影光斑在接收平面上的位置.基于平面单应性原理,通过光斑接收平面上9个原始特征点构造柔性标定靶标,实现高速摄像机的高精度标定.进而根据摄像机标定结果获得光束在世界坐标系中的方向向量,而光束在目标体坐标系中的方向向量可根据其安装位置获得.然后,根据光束在世界坐标系和目标体坐标系中的方向向量实现对目标姿态参数的高精度求解.实验结果表明,本文测量系统满足姿态参数测量误差小于1′(1σ)的要求,能够实现对空间运动目标姿态参数的高精度测量.  相似文献   

3.
针对飞行试验中飞机结构件的动态变形测量问题,提出了一种基于图像的测量方法,对其中涉及的关键技术进行了研究;采用10参数模型非线性成像模型补偿摄像机系统误差,引入摄像机动态校准算法,使摄像机标校重投影误差小于0.03 pixel;采用编码标志作为测量标志,提高了图像自动识别和匹配效率;采用双像机交会测量计算测量标志位移变形量可达到0.15 mm/m;实验证明,该方法满足飞行试验中飞机结构件动态变形要求。  相似文献   

4.
为了实现室内运动目标位姿的高精度测量,建立了一套激光投影成像式位姿测量系统.该系统利用两两共线且交叉排列在同一平面上的点激光投射器作为合作目标捷联在运动目标上,通过与光斑接收幕墙的配合共同组成运动目标位姿测量基线放大系统,利用高速摄像机实时记录幕墙上投影光斑的位置,利用摄像机标定结果求解投影光斑的世界坐标,利用投影光斑之间构成的单位向量建立运动目标位姿解算模型.最后,根据测量原理推导了图像坐标提取、摄像机外部参数标定、光束直线度与目标位姿解算结果之间的误差传递函数.实验结果表明,当摄像机的视场范围为14 000mm×7 000mm时,测量系统的姿态角测量精度为1′(1δ),位置测量精度为5mm,且误差大小与目标位姿测量误差传递函数理论计算值一致,验证了本文提出的目标位姿测量方法与测量误差传递模型的准确性,能够满足目标位姿测量高精度的要求.  相似文献   

5.
一种成像测量图像径向几何畸变的校正方法   总被引:1,自引:0,他引:1  
通过对具有径向畸变的摄像机模型的分析,设计了一套求解图像径向几何畸变中心和畸变多项式系数的方案。首先,依据校正样板曲线的弯曲程度应用一元线性回归法和逐次逼近法求取光学图像的几何畸变中心,然后应用递推最小二乘法求解径向几何畸变的多项式系数,最后根据所得到的畸变中心和畸变多项式系数对图像进行校正得到满足要求的图像。仿真试验证明:该方法可以通过一次采集单幅图像对成像系统进行高精度标定,能够对成像测量系统的径向几何畸变进行一定精度的校正。实践证明:该方法通过图像处理的方法提高成像测量系统的精度,降低了系统的设计成本,可以作为成像测量系统中单独标定摄像机畸变参数的一种简单有效的方法。  相似文献   

6.
大视场短焦距镜头CCD摄像系统的畸变校正   总被引:11,自引:1,他引:10  
从光学测量角度出发,结合计算机视觉中的摄像机标定方法,解决了大视场短焦距镜头CCD摄像系统的畸变校正问题。与摄像机标定不同,畸变校正中仅标定内部参数,外部参数作为已知条件。采用线性畸变模型,由最小二乘法解线性方程组得到摄像系统畸变模型的畸变系数。介绍了数字图像中像素间距和光学中心的标定方法。通过比较由标定参数得到的畸变图像和摄像机采集的畸变图像对实验标定精度进行评定,实验结果表明边缘视场(112°)的标定精度达到了0 75%。  相似文献   

7.
针对晃动平台对空拍摄大视场摄像机难以标定的情况,提出了利用无人机(UAV)作为动态控制点来现场标定摄像机参数的方法。该方法控制无人机在摄像机视场内飞行,并用与晃动平台固联的无人机定位测量系统对无人机位置进行测量,从而整个飞行过程中的无人机位置均可当作控制点对摄像机进行标定。实验中控制点数目充足,易满足控制点在空间和在图像上均匀散布的要求,可以准确求解摄像机内外参数。突破了无法在视场中布设传统像机标定方法所需控制点,使晃动平台上大视场摄像测量无法现场采集参考图像进行高精度标定的局限。对实验条件要求低,最少只需要晃动平台基准坐标系下2个基准点和方位像机光心位置即可标定摄像机内外参数。该方法已成功应用于系泊状态下船舶中摄像机参数的标定。  相似文献   

8.
基于光学测棒的立体视觉坐标测量系统的研究   总被引:7,自引:2,他引:5  
徐巧玉  车仁生 《光学学报》2008,28(11):2181-2186
提出了一种基丁测量与校准功能合一的光学测棒的立体视觉坐标测最系统.采用光学测棒作为成像目标,通过任意放置的两台摄像机获取测棒上的发光特征点的图像实现被测物体三维坐标的测量,同时利用测量数据定期对两台摄像机外部方位参数进行校准.深入研究了两台摄像机内部参数和外部方位参数校准过程中的校准件和校准算法的设计,以及系统测量建模等关键技术,提出了相应的解决方案,减小了摄像机内外参数校准及测量模型对测量结果的影响,提高系统的测量精度.实验结果表明.该系统的最大测量误差为0.11 mm.  相似文献   

9.
沥青路面破损图像自动检测系统设计   总被引:3,自引:0,他引:3  
介绍了由承载车、计算机、路面破损图像采集子系统、路面破损定位子系统、路面破损图像处理子系统等组成的路面破损自动检测实验系统,根据理论分析确定了摄像机的安装位置参数。利用网络通信技术,实现了双CCD摄像机同步采集路面图像,同时对路面破损图像的几何畸变进行了校正。实验结果表明,该系统对典型的路面破损状态可以准确的检测识别。  相似文献   

10.
针对在姿态测量中摄像机成像的复杂畸变问题,提出了一种新型的摄像机校准方法。该方法不需要高精度的标定参照物,只需要利用标定靶标间的相互约束关系建立摄像机内参数与靶标特征的约束方程,从而线性求解摄像机内参数。通过非线性优化方法优化摄像机内参数,完成摄像机的标定。仿真和实验结果表明,所提出的算法对图像噪声不敏感。测量精度和可靠性都得到有效的改善,精度可达0.03pixel,说明该算法在合作目标的姿态测量中具有方法易于实现、测量精度高、可靠的优点。  相似文献   

11.
耿楷真  高治华 《应用光学》2018,39(2):225-229
系统参数的标定是结构光三维测量系统工作的基础,且参数标定的精度直接影响测量的精度,其中投影仪目前还存在标定过程复杂、精度较低等问题。为解决该问题,通过投影一组圆阵图案到一块本身带有特征圆的平板上,并由摄像机拍摄;基于二维射影变换理论,通过误差补偿法建立投影仪图像坐标和摄像机图像坐标的对应关系,利用该对应关系计算获取标定点的投影仪图像坐标;以标定点的两组图像坐标和世界坐标为初始值,使用非线性算法对系统进行全参数整体优化,完成系统的标定。实验验证了系统标定误差最大值小于0.05 mm,误差均方根小于0.03 mm,结果表明该方法标定过程简单,能够有效地提高标定精度,具有较广的适用性。  相似文献   

12.
成像过程中,被摄像目标与摄像机之间的相向运动会造成图像的辐射状模糊。根据相向运动成像特点给出了仿视网膜探测器像元布局的初始结构,建立了其在相向运动成像过程中的成像仿真模型。由仿真实验结果建立了探测器结构参数、模糊度及成像质量三者的关系,验证了仿视网膜探测器在高速相向运动成像中的优势,为仿视网膜探测器的设计奠定了基础。  相似文献   

13.
针对逆向工程中引导性曲面边界信息的快速获取问题,系统地研究了共轴立体视觉测量方法,建立该方法的数学模型,详细分析了摄像机焦距、基线距等系统结构参数及被测点空间位置对测量精度的影响,通过数学分析确定摄像机基线距的最佳取值范围,研究共轴立体视觉测量系统特殊的极线几何关系.提出基于共轴立体视觉的曲面边界快速测量方法,利用三坐标测量机的精密机械系统及精确的空间定位能力,用单个摄像机以两次共轴定位摄取图像的方式实现共轴立体视觉测量功能,然后利用共轴立体视觉外极线相互平行且通过各自像平面主点的特殊极线几何关系简化同源像点匹配过程,从而快速获取被测曲面的边界信息.实验结果表明:用基于三坐标测量机的单摄像机共轴立体视觉测量方法获取的曲面边界平均误差为0.268 mm,基本满足逆向工程中对引导性曲面边界的测量精度要求.  相似文献   

14.
针对逆向工程中引导性曲面边界信息的快速获取问题,系统地研究了共轴立体视觉测量方法,建立该方法的数学模型,详细分析了摄像机焦距、基线距等系统结构参数及被测点空间位置对测量精度的影响,通过数学分析确定摄像机基线距的最佳取值范围,研究共轴立体视觉测量系统特殊的极线几何关系.提出基于共轴立体视觉的曲面边界快速测量方法,利用三坐标测量机的精密机械系统及精确的空间定位能力,用单个摄像机以两次共轴定位摄取图像的方式实现共轴立体视觉测量功能,然后利用共轴立体视觉外极线相互平行且通过各自像平面主点的特殊极线几何关系简化同源像点匹配过程,从而快速获取被测曲面的边界信息.实验结果表明:用基于三坐标测量机的单摄像机共轴立体视觉测量方法获取的曲面边界平均误差为0.268mm,基本满足逆向工程中对引导性曲面边界的测量精度要求.  相似文献   

15.
针对飞行试验中飞机结构件的动态变形测量问题,提出了一种基于图像的测量方法,对其中涉及的关键技术进行了研究。采用10参数模型非线性成像模型补偿摄像机系统误差,引入摄像机动态校准算法,使摄像机标校重投影误差小于0.03pixel;采用编码标志作为测量标志,提高了图像自动识别和匹配效率;采用双像机交会测量计算测量标志位移变形量可达到0.15mm/1m。实验证明,该方法满足飞行试验中飞机结构件动态变形要求。  相似文献   

16.
同志学  赵涛  王消为 《应用光学》2017,38(5):764-769
为了确定车辆在行驶过程中的相对位置与速度,提出一种基于双目序列图像的实时测距定位及自车速度估计方法。该方法利用车载双目视觉传感器采集周围环境的序列图像,并对同一时刻的左右图像进行基于SURF(speeded up robust features)特征的立体匹配,以获取环境特征点的景深,实现车辆测距定位;同时又对相邻两帧图像进行基于SURF特征的跟踪匹配,并通过对应匹配点在相邻两帧摄像机坐标系下的三维坐标,计算出摄像机坐标系在车辆运动前后的变换参数,根据变换参数估算出车辆的行驶速度。模拟实验表明,该方法具有良好的可行性,速度计算结果比较稳定,平均误差均在6%以内。  相似文献   

17.
为了精确测量电控喷油器针阀的运动规律,以汽油机低压电磁阀喷油器为研究对象,采用了霍尔传感器测量电控喷油器针阀响应时的电磁阀电流信号,并引入高速摄像对整个喷雾过程进行同步观察的方法。通过对比分析针阀运动时的喷油器电路中电流信号变化规律和高速摄像系统观察到的实时喷雾图像之间的对应关系,表明针阀的运动响应和霍尔元件传感器的输出电压存在确定的关系,并对针阀运动引起的磁路变化、电流变化进行了理论分析验证。在无需对喷油器进行任何改造的前提下,设计了一套电控喷油器针阀开启及落座滞后时间的测量系统,实现了对电磁喷油器喷油时针阀运动的实时、精准测量。  相似文献   

18.
魏本征 《光学学报》2008,28(s2):153-156
人体组织典型参数的获取对于各类疾病的诊断和治疗有着极其重要的作用。采用高性能显微图像测量系统实现人体组织典型参数在体测量, 对系统研制过程中所涉及的基本原理, 以及图像采集系统、成像系统与图像处理软件等关键性技术问题作了阐述。该显微图像测量系统能快速、有效地完成对人体组织典型图像指标的直接测取和定量分析, 基本实现了人体组织典型参数图像观测的数字化与检测的高智能化。实验结果表明, 采用该系统在体观测人体组织典型参数, 可以实时观测人体组织显微图像, 计算并保存毛细血管网络形态学参数和微血流动力学的各项参数, 同时具有快速简单、精确度高等特点, 可作为医学研究的重要手段之一。  相似文献   

19.
推导了一种用于无人直升机自主着舰的相对位姿单目单帧视觉测量算法。设计了基于正方形主特征的着降区域平面特征图案,根据几何透视投影学理论,采用摄像机针孔模型,以特征图案主正方形四角点的物理坐标和图像坐标作为输入,并以正方形邻边的垂直特性作为束缚条件,推导出了位置和姿态6个参数的解析表达式。通过在实验室环境下对真实图像的测量表明,当特征图案主正方形边长为0.1m(等效实际甲板特征图案边长1m)和相对距离为1m(等效实际距离10m)左右时,位置参数RMS误差小于0.2cm(等效为2cm),姿态参数RMS误差小于1.2°,算法具有很好的稳定性,可用于无人直升机着舰过程中的位姿测量。  相似文献   

20.
陆兵  束梅玲 《应用声学》2014,22(7):2005-2007,2013
针对软包装带材在运动过程中易发生跑偏现象的工程背景,设计了一种自动测量与纠偏系统。介绍了系统组成和纠偏原理,系统采用机器视觉实时采集带材边缘图像,用直方图修正方法修正图象灰度,通过增强对比度突出图像中的带材边缘特征,用基于一阶微分的边缘检测方法实现边缘识别及判定边缘位置,运用FUZZY+PID相结合的控制模型实施纠偏控制;实验结果表明,采用LED光源和Microvision数字摄像机,在200 m/min中等车速和纠偏机构速度10 mm/s条件下,系统纠偏精度在±0~±1 mm之间,稳态误差小,相对误差小,能够满足软包装带材生产过程中的纠偏要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号