首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
O. Olendski 《Annalen der Physik》2016,528(11-12):865-881
Information‐theoretical concepts are employed for the analysis of the interplay between a transverse electric field applied to a one‐dimensional surface and Robin boundary condition (BC), which with the help of the extrapolation length Λ zeroes at the interface a linear combination of the quantum mechanical wave function and its spatial derivative, and its influence on the properties of the structure. For doing this, exact analytical solutions of the corresponding Schrödinger equation are derived and used for calculating energies, dipole moments, position and momentum quantum information entropies and their Fisher information and and Onicescu information energies and counterparts. It is shown that the weak (strong) electric field changes the Robin wall into the Dirichlet, (Neumann, ), surface. This transformation of the energy spectrum and associated waveforms in the growing field defines an evolution of the quantum‐information measures; for example, it is proved that for the Dirichlet and Neumann BCs the position (momentum) quantum information entropy varies as a positive (negative) natural logarithm of the electric intensity what results in their field‐independent sum . Analogously, at and the position and momentum Fisher informations (Onicescu energies) depend on the applied voltage as () and its inverse, respectively, leading to the field‐independent product (). Peculiarities of their transformations at the finite nonzero Λ are discussed and similarities and differences between the three quantum‐information measures in the electric field are highlighted with the special attention being paid to the configuration with the negative extrapolation length.

  相似文献   


2.
A single spin‐1/2 particle obeys the Dirac equation in spatial dimension and is bound by an attractive central monotone potential which vanishes at infinity (in one dimension the potential is even). This work refines the relativistic comparison theorems which were derived by Hall 1 . The new theorems allow the graphs of the two comparison potentials and to crossover in a controlled way and still imply the spectral ordering for the eigenvalues at the bottom of each angular momentum subspace. More specifically in a simplest case we have: in dimension , if , then ; and in dimensions, if , where and , then .

  相似文献   


3.
A possible scenario of the Lorentz symmetry violation is discussed based on the arising of geometric quantum phases yielded by the effects of the Lorentz symmetry violation in the CPT‐even gauge sector of Standard Model Extension. Analogues of the Anandan quantum phase and the scalar Aharonov‐Bohm effect for a neutral particle [J. Anandan, Phys. Lett. A 138 , 347 (1989)] are obtained from the parity‐odd sector of the tensor . Moreover, we build quantum holonomies associated with the analogue of the Anandan quantum phase and discuss a possible analogy with the geometric quantum computation [A. Ekert et al., J. Mod. Opt. 47 , 2501 (2000)].

  相似文献   


4.
In the paper, for the Kerr field, we prove that Chandrasekhar's Dirac Hamiltonian and the self‐adjoint Hamiltonian with a flat scalar product of the wave functions are physically equivalent. Operators of transformation of Chandrasekhar's Hamiltonian and wave functions to the η representation with a flat scalar product are defined explicitly. If the domain of the wave functions of Dirac's equation in the Kerr field is bounded by two‐dimensional surfaces of revolution around the z axis, Chandrasekhar's Hamiltonian and the self‐adjoint Hamiltonian in the η representation are Hermitian with equality of the scalar products, .

  相似文献   


5.
The analytical solution of the quantum Rabi model is based on a transcendental function , the zeros of which determine the eigenenergies. is generalized here to a function , which allows a much better numerical control of the high‐energy part of the spectrum by an appropriate choice of the complex parameter z. Additionally, it is shown that all zeros of correspond to eigenvalues of the Hamiltonian as well as the zeros of for imaginary z.  相似文献   

6.
It was previously argued that the phenomenon of quantum gravitational decoherence described by the Wheeler‐DeWitt equation is responsible for the emergence of the arrow of time. Here we show that the characteristic spatio‐temporal scales of quantum gravitational decoherence are typically logarithmically larger than a characteristic curvature radius of the background space‐time. This largeness is a direct consequence of the fact that gravity is a non‐renormalizable theory, and the corresponding effective field theory is nearly decoupled from matter degrees of freedom in the physical limit . Therefore, as such, quantum gravitational decoherence is too ineffective to guarantee the emergence of the arrow of time and the “quantum‐to‐classical” transition to happen at scales of physical interest. We argue that the emergence of the arrow of time is directly related to the nature and properties of physical observer.

  相似文献   


7.
A comparative analysis of three different time‐independent approaches to studying open quantum structures in a uniform electric field was performed using the example of a one‐dimensional attractive or repulsive δ‐potential and the surface that supports the Robin boundary condition. The three considered methods exploit different properties of the scattering matrix as a function of energy E: its poles, real values, and zeros of the second derivative of its phase. The essential feature of the method of zeroing the resolvent, which produces complex energies, is the unlimited growth of the wave function at infinity, which is, however, eliminated by the time‐dependent interpretation. The real energies at which the unitary scattering matrix becomes real correspond to the largest possible distortion, , or its absence at which in either case leads to the formation of quasibound states. Depending on their response to the increasing electric intensity, two types of field‐induced positive energy quasibound levels are identified: electron‐ and hole‐like states. Their evolution and interaction in the enlarging field lead ultimately to the coalescence of pairs of opposite states, with concomitant divergence of the associated dipole moments in what is construed as an electric breakdown of the structure. The characteristic features of the coalescence fields and energies are calculated and the behavior of the levels in their vicinity is analyzed. Similarities between the different approaches and their peculiarities are highlighted; in particular, for the zero‐field bound state in the limit of the vanishing , all three methods produce the same results, with their outcomes deviating from each other according to growing electric intensity. The significance of the zero‐field spatial symmetry for the formation, number, and evolution of the electron‐ and hole‐like states, and the interaction between them, is underlined by comparing outcomes for the symmetric δ geometry and asymmetric Robin wall.

  相似文献   


8.
Ralf Hofmann 《Annalen der Physik》2015,527(3-4):254-264
Presuming that CMB photons are described by the deconfining phase of an SU(2) Yang‐Mills theory with the critical temperature for the deconfining‐preconfining phase transition matching the present CMB temperature K (SU(2)CMB), we investigate how CMB temperature T connects with the cosmological scale factor a in a Friedmann‐Lemaître‐Robertson‐Walker Universe. Owing to a violation of conformal scaling at late times, the tension between the (instantaneous) redshift of reionisation from CMB observation () and quasar spectra () is repealed. Also, we find that the redshift of CMB decoupling moves from to which questions ΛCDM cosmology at high redshifts. Adapting this model to the conventional physics of three flavours of massless cosmic neutrinos, we demonstrate inconsistency with the value Neff ~ 3.36 extracted from Planck data. Interactions between cosmic neutrinos and the CMB implies a common temperature T of (no longer separately conserved) CMB and neutrino fluids. Neff ~ 3.36 then entails a universal, temperature induced cosmic neutrino mass with . Our above results on zre and zdec, derived from SU(2)CMB alone, are essentially unaffected when including such a neutrino sector.

  相似文献   


9.
Analytical solutions of the Schrödinger equation for the one‐dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small , the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC‐dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two‐level approximation elementary explains the negative polarizations as a result of the field‐induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann‐Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero‐voltage position entropies are BC independent and for all states but the ground Neumann level (which has ) are equal to while the momentum entropies depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC‐dependent zero‐energy and zero‐polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.

  相似文献   


10.
We determine the regularized van der Waals contribution to pressure within a spherical cavity of vapor in a homogeneous, isotropic, infinite medium. The spherical Hamaker function, , has been defined, for the first time, in contrast to the conventional Hamaker function for planar surfaces, . For the materials under consideration, the pressure inside the cavity varies as , where a is the radius of the cavity. For radii below a transition radius, the surface energy (or surface tension) becomes size dependent and could have important implications for homogeneous nucleation of nanosized bubbles in liquids, as well as cavitation of bubbles.

  相似文献   


11.
Topological singularity in a continuum theory of defects and a quantum field theory is studied from a viewpoint of differential geometry. The integrability conditions of singularity (Clairaut‐Schwarz‐Young theorem) are expressed by a torsion tensor and a curvature tensor when a Finslerian intrinsic parallelism holds for the multi‐valued function. In the context of the quantum field theory, the singularity called an extended object is expressed by the torsion when the intrinsic parallelism is related to the spontaneous breakdown of symmetry. In the continuum theory of defects, the path‐dependency of point and line defects within a crystal is interpreted by the non‐vanishing condition of torsion tensor in a non‐Riemannian space osculated from the Finsler space, and the domain is not simply connected. On the other hand, for the rotational singularity, an energy integral (J‐integral) around a disclination field is path‐independent when a nonlinear connection is single‐valued. This means that the topological expression for the sole defect (Gauss‐Bonnet theorem with genus ) is understood by the integrability of nonlinear connection.

  相似文献   


12.
A single particle obeys the Dirac equation in spatial dimensions and is bound by an attractive central monotone potential that vanishes at infinity. In one dimension, the potential is even, and monotone for The asymptotic behavior of the wave functions near the origin and at infinity are discussed. Nodal theorems are proven for the cases and , which specify the relationship between the numbers of nodes n1 and n2 in the upper and lower components of the Dirac spinor. For , whereas for if and if where and This work generalizes the classic results of Rose and Newton in 1951 for the case Specific examples are presented with graphs, including Dirac spinor orbits   相似文献   

13.
O. Olendski 《Annalen der Physik》2016,528(11-12):882-897
A theoretical analysis of the thermodynamic properties of the Robin wall characterized by the extrapolation length Λ in the electric field that pushes the particle to the surface is presented both in the canonical and two grand canonical representations and in the whole range of the Robin distance with the emphasis on its negative values which for the voltage‐free configuration support negative‐energy bound state. For the canonical ensemble, the heat capacity at exhibits a nonmonotonic behavior as a function of the temperature T with its pronounced maximum unrestrictedly increasing for the decreasing fields as and its location being proportional to . For the Fermi‐Dirac distribution, the specific heat per particle is a nonmonotonic function of the temperature too with the conspicuous extremum being preceded on the T axis by the plateau whose magnitude at the vanishing is defined as , with N being a number of the particles. The maximum of is the largest for and, similar to the canonical ensemble, grows to infinity as the field goes to zero. For the Bose‐Einstein ensemble, a formation of the sharp asymmetric feature on the ‐T dependence with the increase of N is shown to be more prominent at the lower voltages. This cusp‐like dependence of the heat capacity on the temperature, which for the infinite number of bosons transforms into the discontinuity of , is an indication of the phase transition to the condensate state. Some other physical characteristics such as the critical temperature and ground‐level population of the Bose‐Einstein condensate are calculated and analyzed as a function of the field and extrapolation length. Qualitative and quantitative explanation of these physical phenomena is based on the variation of the energy spectrum by the electric field.  相似文献   

14.
Single crystalline LiAlO is known as a very poor ion conductor. Thus, in its crystalline form it unequivocally disqualifies itself from being a powerful solid electrolyte in modern energy storage systems. On the other hand, its interesting crystal structure proves beneficial to sharpen our understanding of Li ion dynamics in solids which in return might influence application‐oriented research. LiAlO allows us to apply and test techniques that are sensitive to extremely slow Li ion dynamics. This helps us clarifying their diffusion behaviour from a fundamental point of view. Here, we combined two techniques to follow Li ion translational hopping in LiAlO that can be described by the same physical formalism: dynamic mechanical relaxation and electrical relaxation, i.e., ionic conductivity measurements. Via both methods we were able to track the same transport mechanism in LiAlO. Moreover, this enabled us to directly probe extremely slow Li exchange rates at temperatures slightly above 430 K. The results were compared with recent insights from nuclear magnetic resonance spectroscopy. Altogether, an Arrhenius‐type Li diffusion process with an activation energy of ca. 1.12 eV was revealed over a large dynamic range covering 10 orders of magnitude, i.e., spanning a dynamic range from the nano‐second time scale down to the second time scale.

  相似文献   


15.
Feng Peng 《Annalen der Physik》2015,527(5-6):402-407
We study the spin orientation of the neutron scattered by light‐irradiated graphene and calculate the average value of spin z‐component of the neutron in terms of a generating functional technique. Our calculation results indicate that there is a remarkable neutron polarization effect when a neutron penetrates graphene irradiated by a circularly polarized light. We analyse the dynamical source of generating this effect from the aspect of photon‐mediated interaction between the neutron spin and valley pseudospin. By comparing with the polarization induced by a magnetic field, we find that this polarization may be equivalent to the one led by a magnetic field of several hundred Teslas if the photon frequency is in the X‐ray frequency range. This provides an approach of polarizing neutrons.

  相似文献   


16.
Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa2Cu3O7 (YBCO) superconducting thin films are compared by examining the improvements in the critical current density they produced. The comparison is made to establish the role of their lithographically defined (non‐)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non‐uniform arrays, including graded ones enhance over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on compared to the original (as‐deposited) thin films.

  相似文献   


17.
The quanum levels and corresponding vortex states in nanoscale superconductors are investigated within generalized Bogolubov‐de Gennes theory. For symmetric (square‐shaped) samples thermodynamically stable vortex phases form symmetry‐consistent patterns and no transition to conventional Abrikosov‐like vortex patterns occurs till T=0K for sizes not exceeding 25 nm. For vorticity a giant vortex is stabilized at temperatures in the vicinity of , which transforms into a giant antivortex and four normal vortices with lowering the temperature. On the other hand, the vortex pattern for vorticity corresponds to an antivortex and four normal vortices in the whole temperature domain.  相似文献   

18.
The interest to mesoscale dielectric objects, whose effective dimensions are comparable with the incident radiation wavelength, is caused by their unique ability to modify the spatial structure of the incident wave in the specific manner and to produce a highly localized intensive optical flux (“photonic jet”) with the subwavelength spatial resolution. In the current paper we brief review the modern state‐of‐the‐art of main principles of the photonic jet formation by non‐spherical and non‐symmetrical dielectric mesoscale particles both in transmitting and reflection mode. A deeper understanding of the photonic jet is nevertheless needed to fully exploit the potential performance of nano‐ and micro‐ dielectric mesoscale objects as diffractive components at different wavebands.

  相似文献   


19.
A non conventional source or receiver of THz and above THz electromagnetic radiation is proposed. Specifically, electron or hole oscillations in DNA dimers (two interacting DNA base‐pairs or monomers) are predicted, with frequency in the range 0.25–100 THz (period 10–4000 fs) i.e. potentially absorbing or emitting electromagnetic radiation mainly in the mid‐ and far‐infrared with wavelengths ≈ 3–1200 μm. The efficiency of charge transfer between the two monomers which make up the dimer is described with the maximum transfer percentage p  and the pure maximum transfer rate . For dimers made of identical monomers , but for dimers made of different monomers . The investigation is extended to DNA trimers (three interacting DNA base‐pairs or monomers). For trimers made of identical monomers the carrier oscillates periodically with 0.5–33 THz ( 30–2000 fs); for 0 times crosswise purines , for 1 or 2 times crosswise purines . For trimers made of different monomers the carrier movement may be non periodic. Generally, increasing the number of monomers above three, the system becomes more complex and periodicity is lost; even for the simplest tetramer the carrier movement is not periodic.  相似文献   

20.
A fiber laser based on random distributed feedback has attracted increasing attention in recent years, as it has become an important photonic device and has found wide applications in fiber communications or sensing. In this article, recent advances in high‐power random distributed feedback fiber laser are reviewed, including the theoretical analyses, experimental approaches, discussion on the practical applications and outlook. It is found that a random distributed feedback fiber laser can not only act as an information photonics device, but also has the feasibility for high‐efficiency/high‐power generation, which makes it competitive with conventional high‐power laser sources. In addition, high‐power random distributed feedback fiber laser has been successfully applied for midinfrared lasing, frequency doubling to the visible and high‐quality imaging. It is believed that the high‐power random distributed feedback fiber laser could become a promising light source with simple and economic configurations.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号