首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The direct imaging of photonic nanojets in different dielectric microdisks illuminated by a laser source is reported. The SiO2 and Si3N4 microdisks are of height 650 nm with diameters ranging from 3 μm to 8 μm. The finite-difference time-domain calculation is used to execute the numerical simulation for the photonic nanojets in the dielectric microdisks. The photonic nanojet measurements are performed with a scanning optical microscope system. The photonic nanojets with high intensity spots and low divergence are observed in the dielectric microdisks illuminated from the side with laser source of wavelengths 405 nm, 532 nm and 671 nm. The experimental results of key parameters are compared to the simulations and in agreement with theoretical results. Our studies show that photonic nanojets can be efficiently created by a dielectric microdisk and straightforwardly applied to nano-photonics circuit.  相似文献   

2.
In this paper, a novel method is presented for creating a 3-dimensinal sub-diffraction effective observation volume based on microsphere photonic nanojet and fluorescence depletion effect. Using microsphere to achieve photonic nanojet focusing effect, the proposed method applies the radially polarized plane wave to excite fluorescence and the azimuthally polarized beam to obtain fluorescence depletion field. The effective detection volume of photonic nanojet can reach 0.002 μm3 (2aL). Compared with conventional confocal microscopy, this effective detection volume represents a reduction of almost 2 orders of magnitude. With simple configuration based on cost-effective microspheres, the proposed method is theoretically proved to be a potential tool for the fluorescence correlation spectroscopy (FCS) to have large analysis range and to investigate single molecule at high concentrations.  相似文献   

3.
Silicon microspheres are transparent in the near-infrared telecommunication bands and can be used for electrophotonic integration. We have experimentally observed blue shifts in resonance wavelengths of an electrically driven silicon microsphere of 500 μm in radius, in the near-infrared. We have used a distributed feed back (DFB) laser operating at 1475 nm, and applied electrical potential differences up to 9 V to the silicon microsphere. We have observed blue shifts in the resonance wavelengths up to 0.05 nm, which corresponds to a change in the refractive index of 10−4.  相似文献   

4.
We propose ultra-compact wavelength division demultiplexer based on photonic band gap in two dimensional photonic crystals. The structure consists of two different types of lattice, which can separate two communication wavelengths, 1310 and 1490 nm. In addition, it also can be used to separate the wavelengths of 1310 and 1550 nm if we change the structural parameters. The total size of the present structure is only 12.5 μm × 12.5 μm. The transmission efficiency is above 97%, and the good performance is verified with plane wave expansion and finite-difference time-domain simulation.  相似文献   

5.
An ultrasmall silicon periodic dielectric waveguides-based multimode interference all-optical logic gate has been proposed. The device consists of three 205 nm wide single-mode input waveguides, a 1.1 μm wide and 5.5 μm long multimode interference waveguide, and three 205 nm wide single-mode output waveguides. The total length and width of the device are 13.7 μm and 3.2 μm, respectively. By changing the states of the input optical signals and/or control signals launched into the device, multifunctional logic functions including OR, NAND, NOR, and NOT gates are performed, and each logic function can be realized at a specific output waveguide in accordance with the launched control signals. The ultrasmall multifunctional logic device has potential applications in high density photonic integrated circuits.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(5):1707-1713
A novel template-free sonochemical synthesis technique was used to prepare NiO microspheres combined with calcination of NiO2.45C0.74N0.25H2.90 precursor at 500 °C. The NiO microspheres samples were systematically investigated by the thermograviometric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier-transformed infrared spectroscopy (FT-IR), Brunnauer–Emmett–Teller (BET) nitrogen adsorption–desorption isotherms, laser particle size analyzer, and ultraviolet–visible spectroscopy (UV–Vis). The morphology of the precursor was retained even after the calcination process, and exhibited hierarchically porous sphericity. The morphology changed over the ultrasonic radiation time, and the shortest reaction time was 70 min, which was much less than 4 h for the mechanical stirring process. The mechanical stirring was difficult to form the complete hierarchically porous microsphere structure. The BET specific surface area and the median diameter of the hierarchically porous NiO microspheres were 103.20 m2/g and 3.436 μm, respectively. The synthesized NiO microspheres were mesoporous materials with a high fraction of macropores. The pores were resulted from the intergranular accumulation. The ultraviolet absorption spectrum showed a broad emission at the center of 475 nm, and the band gap energy was estimated to be 3.63 eV.  相似文献   

7.
We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (~2.3 λ) and a near diffraction-limited spot size of 400 nm (~0.61 λ).  相似文献   

8.
In this study the modes produced by a defect inserted in a macroporous silicon (MP) photonic crystal (PC) have been studied theoretical and experimentally. In particular, the transmitted and reflected spectra have been analyzed for variations in the defect’s length and width. The performed simulations show that the resonant frequency is more easily adjusted for the fabricated samples by length tuning rather than width. The optimum resonance peak results when centered in the PC bandgap. The changes in the defect geometry result in small variations of the optical response of the PC. The resonance frequency is most sensitive to length variations, while the mode linewidth shows greater change with the defect width variation. Several MPS photonic crystals were fabricated by the electrochemical etching (EE) process with optical response in the range of 5.8 μm to 6.5 μm. Results of the characterization are in good agreement with simulations. Further samples were fabricated consisting of ordered modulated pores with a pitch of 700 nm. This allowed to reduce the vertical periodicity and therefore to have the optical response in the range of 4.4 μm to 4.8 μm. To our knowledge, modes working in this range of wavelengths have not been previously reported in 3-d MPS structures. Experimental results match with simulations, showing a linear relationship between the defect’s length and working frequency inside the bandgap. We demonstrate the possibility of tailoring the resonance peak in both ranges of wavelengths, where the principal absorption lines of different gases in the mid infrared are placed. This makes these structures very promising for their application to compact gas sensors.  相似文献   

9.
《Optik》2013,124(16):2373-2375
We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is realized by modifying the size of the border holes.The proposed demultiplexer has an area equal to (16.5 μm × 6.5 μm) and thus it is verified that this structure is very small and can be integrated easily into optical integrated circuits with nanophotonic technologies. The output wavelengths of designed structure can be tuned for communication applications, around 1550 nm. The wavelengths of demultiplexer channels are λ1 = 1.590 μm, λ2 = 1.566 μm, λ3 = 1.525 μm, λ4 = 1.510 μm, λ5 = 1.484 μm, λ6 = 1.450 μm, λ7 = 1.400 μm respectively. Designs offering improvement of number of the separate wavelengths (seven), miniaturization of the structure (107.25 μm2) is our aim in this work.In our structure, we consider that the 2D triangular lattice photonic crystal is composed of air holes surrounded by dielectric. Its parameters are: radius of holes (r = 0.130 μm), lattice constant (a = 0.380 μm), and index of membrane (n = 3.181:InP). The numerical model used to simulate the structure of the demultiplexer is based on the finite difference time domain (FDTD).  相似文献   

10.
A. Mouldi  M. Kanzari 《Optik》2012,123(2):125-131
We propose a flexible design for one-dimensional photonic crystals (1D-PCs) with a controllable omnidirectional band gap covering the optical telecommunication wavelengths which are 0.85 μm, 1.3 μm and 1.55 μm. We used for this design the chirped grating. Chirping is applied to geometric thicknesses of layers. It takes two forms, one is linear and the other is exponential. We exploit this technique to have the suitable omnidirectional band gap covering the maximum of optical telecommunication wavelengths. With a quarter wave structure, we can have an omnidirectional band gap generating only one of these wavelengths. With graded structure, we obtain, as is reported in this paper, an omnidirectional band gap which covers the wavelengths 1.3 μm and 1.55 μm at the same time with a large bandwidth. We also achieve an omnidirectional band gap containing the wavelength 0.85 μm and which is obviously larger than that of the quarter wave stack.  相似文献   

11.
Shuo Liu  Shu-Guang Li  Xing-Ping Zhu 《Optik》2012,123(20):1858-1861
A novel kind of polarization splitter in dual-core elliptical holes hybrid photonic crystal fiber is proposed. Numerical results show that the splitter can reach small coupling length ratio of 0.5, for wavelength from 1.15 μm to 1.9 μm. At wavelength 1.55 μm, the extinction ratio can achieve ?64 dB and the 1.92-mm-long splitter is suggested to achieve extinction ratio better than ?10 dB, a bandwidth of 150 nm. The fiber has small coupling length ratio, small coupling length and high extinction ratio and it is more suitable for fabricating polarization splitter.  相似文献   

12.
A twin bow-tie polymer-based photonic quasi-crystal fiber with high birefringence, high nonlinearity and low dispersion as well as maintaining single mode operation is presented in the wavelength range 1.8–2.2 μm. Through optimizing fiber structure parameter using a full-vector finite-element method combined with perfectly matched layers boundary condition, the birefringence is as high as 2.43 × 10−3, the nonlinearity is as high as 118 W−1 km−1, and the dispersion is only 25 ps/nm/km at 2 μm with the holes pitch of 3.3 μm. From the point of fabrication, the influences of deviation of each air hole diameter are discussed to verify the robustness of the photonic quasi-crystal fiber designed.  相似文献   

13.
In this work we introduce a symmetric waveguide intersection in photonic crystal structures, which passes the optical power entering from each one of its four ports, directly to the forward port. This junction allows designers to easier and more efficient design of photonic integrated circuits (PICs) and to create bridge-junctions in a 13.3 μm2 area with just one linear material in its construction. The minimum pass to stop contrast ratio is 26 db with an 18.1 nm bandwidth for contrast ratio over 15 db. Conformal finite difference time domain (CFDTD) method has been used to analysis the system and numerically demonstrates its working.  相似文献   

14.
The change in characteristic magnetic fields of a spin-valve multilayer is investigated as a function of the size by computer simulation. The spin-valve modeled in this work is IrMn (9 nm)/CoFe (4 nm)/Cu (2.6 nm)/CoFe (2 nm)/NiFe (6 nm). The spin-valve dimensions are varied widely from 20 mm×10 mm to 0.5 μm×0.25 μm, but the aspect ratio defined by the ratio of the length to the width is fixed at 2.0. The magnetostatic interactions begin to affect the magnetic properties substantially at a spin-valve length of 5 μm, and, at a length of 1 μm, they become even more dominant. The main consequences of the magnetostatic interactions are a significant increase of the coercivity and a very large shift of the bias field in both the pinned and free layers. It is shown that these changes can be explained by two separate contributions to the total magnetostatic interactions: the coercivity change by the self-demagnetizing field and the change of the bias field by the interlayer magnetostatic interaction field.  相似文献   

15.
We propose a compact polarization splitter based on dual-elliptical-core photonic crystal fiber. Two elliptical cores are introduced to increase the difference of effective index between x-polarized and y-polarized mode and three elliptical modulation air holes are used to control the power transfer between the two cores. By optimizing the structure parameters, the length of the polarization splitter is distinctly shortened. Numerical results demonstrate that the compact splitter has the length of 775 μm and up to 50 dB extinction ratio at the central wavelength of 1.55 μm. The corresponding bandwidth of 32 nm could be achieved from the wavelength of 1.534–1.566 μm with the extinction ratio over 20 dB  相似文献   

16.
The authors have produced the polymer micro-fiber with a highly optical conductive efficiency of 83% and 89% for the pump light of 532 nm and 1550 nm, respectively. The authors constructed a Mach–Zehnder Interferometer (MZI) by a micro-manipulation method and measured the different interference spectra by micro-adjusting the path difference of the dual interference arms of MZI under a microscope. Due to the path difference, the coherent length of the corresponding spectrum continuously and slightly decreases from 20 μm, 13.5 μm, 10.6 μm to 8 μm. The relationships between this particular MZI structure and the surrounding temperature, as well as the refractive index changes can be determined via the evanescent field and the thermally induced expansion or contraction effect, which will be reflected in the interference spectrum.  相似文献   

17.
A novel 1 × 2 optical power splitter in size of 8.0 μm × 4.2 μm is presented in this paper, by using photonic bandgap (PBG) structures on silicon-on-insulator (SOI) substrate. The splitting ratio can be adjusted by changing the air hole position to get wide tuning range. The design is examined by the commercial finite-difference-time-domain (FDTD) software for various splitting ratios. Some approximated formulas are obtained through curve-fitting to facilitate design process.  相似文献   

18.
We investigate the feasibility of cutting and drilling thin flex glass (TFG) substrates using a picosecond laser operating at wavelengths of 1030 nm, 515 nm and 343 nm. 50 μm and 100 μm thick AF32®Eco Thin Glass (Schott AG) sheets are used. The laser processing parameters such as the wavelength, pulse energy, pulse repetition frequency, scan speed and the number of laser passes which are necessary to perform through a cut or to drill a borehole in the TFG substrate are studied in detail. Our results show that the highest effective cutting speeds (220 mm/s for a 50 μm thick TFG substrate and 74 mm/s for a 100 μm thick TFG substrate) are obtained with the 1030 nm wavelength, whereas the 343 nm wavelength provides the best quality cuts. The 515 nm wavelength, meanwhile, can be used to provide relatively good laser cut quality with heat affected zones (HAZ) of <25 μm for 50 μm TFG and <40 μm for 100 μm TFG with cutting speeds of 100 mm/s and 28.5 mm/s, respectively. The 343 nm and 515 nm wavelengths can also be used for drilling micro-holes (with inlet diameters of ⩽75 µm) in the 100 μm TFG substrate with speeds of up to 2 holes per second (using 343 nm) and 8 holes per second (using 515 nm). Optical microscope and SEM images of the cuts and micro-holes are presented.  相似文献   

19.
A 1.94 μm Tm-doped fiber laser pumped tunable single-longitudinal-mode Ho:YLF laser with double etalons was reported for the first time. The maximum single-longitudinal-mode output power of 345 mW at 2051.6 nm was achieved at the absorbed pump power of 11.9 W, corresponding to a slope efficiency of 5.5% and an optical conversion efficiency of 2.9%. By regulating the angle of the F–P etalons, the output wavelength of the laser can be tuned from 2051.6 nm to 2063.3 nm. The single-longitude-mode Ho:YLF laser operating at 2 μm can be used as the seed laser source of coherent Doppler lidar, differential absorption lidar and so on.  相似文献   

20.
This study presents a simple, cost-effective and sensitive air-gap fiber Fabry–Perot interferometer (AG-PPFI) which is based on a metal Tin (Sn)-overlaying fiber technique. An extremely small drop of metallic Sn was heated and then melted to shrink into a microsphere owing to the cohesion of the material. When a fiber was inserted into the melting Sn microsphere, an air gap was naturally formed between the fiber endface and the metal Sn during the cooling process. By carefully controlling the reaction time, various air-gaps can be formed as the Fabry–Perot interferometric cavities for the proposed AG-PPFIs. Measurements reveal that a smaller length of air-gap and heavier mass of Sn-microsphere are associated with higher sensitivity of temperature, but the former is dominated. A best temperature sensitivity of wavelength shift with +4.3 nm/°C is achieved when the air-gap is about 5 μm with mass of Sn-microsphere of about 10 μg. The variation of the wavelength shift is equivalent to sensitivity for a change in the cavity length of +14.83 nm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号