首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The process of aging of ceramic carbonized hydroxyapatite (CHA) produced in a dry carbon dioxide atmosphere at temperatures of 800–1200°C has been studied by chemical and X-ray structural analysis, infrared spectroscopy, and scanning electron microscopy methods. The phase composition and structure of initial prepared ceramics samples and those aged for a year have been compared. It has been shown that relaxation of internal stresses occurring during pressed sample sintering causes plastic deformation of crystallites at room temperature, accompanied by redistribution of carbonate ions between A1, A2, B1, and B2 sites and CHA decomposition with the formation of CaO separations.  相似文献   

2.
A thorough study concerning O-alkylation and α-bromination of dihydroxyacetophenone (DA) and N-alkylation of 1,2-diazine, under ultrasound (US) and microwave (MW) irradiation as well as under conventional thermal heating (TH) is presented. Under US and MW irradiation the yields are higher, the amount of used solvent decreases substantially, the reaction time decreases considerable (from hours or days to minutes) and the consumed energy decreases, consequently the O-alkylation, α-bromination and N-alkylation methods could be considered environmentally friendly. A selective and efficient way to either bis-O-alkylation or mono-O-alkylation of DA has been found, the relative position of the two hydroxyl groups on the phenyl moiety being compulsory. A selective and efficient way for α-bromination in heterogeneous catalysis of DA derivatives under US irradiation is presented. The N-alkylation reaction of DA under US and MW irradiation proved to be the most convenient setup procedure for these types of reactions. Overall, the use of US proved to be more efficient than MW or TH.  相似文献   

3.
In the present work, we investigated the effect of employing ultrasonic waves during pulse electrochemical deposition on surface topography, chemical composition and biocompatibility of calcium phosphate (Ca-P) coatings. The SEM and 3D AFM images showed that the anodized titanium surface was covered with the uniform and refined size of plate-like Ca-P crystals, when the ultrasonic treatment of the electrolyte with power of 60 W was carried out during deposition. In contrast, for the Ca-P; 0 W coating applied under only the magnetic stirring of the electrolyte, the microstructure was non-uniform and some Ca-P crystals with the larger size were randomly observed in different regions, causing a rougher surface. The FTIR results also revealed that employing the ultrasound increases the deposition of a coating involved in only the most stable Ca-P phase of carbonated hydroxyapatite (CHA). However, in the absence of ultrasound, besides the prominent phase of CHA, some less stable Ca-P phases like octa calcium phosphate (OCP) and brushite were also formed in the Ca-P; 0 W coating. The Ca-P; 60 W coating showed the higher ability for apatite biomineralization after a 7-day immersion in the simulated body fluid (SBF). This coating also provided a better surface for the cellular activity, as compared to the Ca-P; 0 W coating.  相似文献   

4.
Materials in the hydroxyapatite (HA)-calcium carbonate (CC) system were synthesized by a precipitation method from aqueous solutions. According to the data of X-ray phase analysis and IR spectroscopy, the powders consisted of CC and AB-type carbonate-substituted HA (CHA). In order to determine the content of carbonate-containing phases in materials, the temperature-temporal mode of fractionated-combustion analysis of carbon was developed. The quantitative phase ratios and the degree of substitution of carbonate groups in CHA were determined. It was shown that the degree of substitution of carbonate groups in CHA increased from 2.47 to 5.31 wt % as the CC content increased from 13.50 to 88.33 wt %.  相似文献   

5.
Size-controlled synthesis of hydroxyapatite nanorods were carried out by chemical precipitation method using polyethylene glycol (MW 600), Tween 20, trisodium citrate, and d-sorbitol as organic modifiers and starting from calcium nitrate, phosphoric acid, and ammonia solution. The influence of the organic modifiers on the sizes of the resultant HAP nanorods was investigated under different synthesis temperatures. It was found that polyethylene glycol was beneficial to the formation of HAP nanorods with a larger aspect ratio (average length/average diameter) at high synthesis temperature, Tween 20 and trisodium citrate favored the formation of small-sized HAP nanorods, and d-sorbitol helped the formation of HAP nanorods with long length at low synthesis temperatures.  相似文献   

6.
In the present work, we have studied for the first time the combined effect of both sonication and precipitation pH on the structure of amorphous zirconia gels synthesized from zirconium(IV) propoxide. The techniques of small-angle neutron and X-ray scattering (SANS and SAXS) and low temperature nitrogen adsorption provided the integral data on the changes in the microstructure and mesostructure of these materials caused by ultrasonic (US) treatment. Amorphous ZrO2·xH2O synthesized under ultrasonic treatment was found to possess a very structured surface, characterized by the surface fractal dimension 2.9–3.0, compared to 2.3–2.5 for the non US-assisted synthesis, and it was also found to possess a higher specific surface area, while the sizes of the primary particles remain unchanged.  相似文献   

7.
珊瑚水热转换羟基磷灰石中的影响因素   总被引:6,自引:0,他引:6  
分别在不同的反应温度、不同的pH值、加矿化剂与否的条件下,将滨珊瑚水热转换为珊瑚羟基磷灰石。利用X射线衍射(XRD)、扫描电子显微镜(SEM)分别对产物和中间产物的物相和微结构进行了分析。发现不同条件下存在有不同的反应路径。考察了反应温度、pH值和矿化剂对珊瑚水热反应的影响。  相似文献   

8.
《Current Applied Physics》2014,14(9):1201-1207
The microwave (MW) synthesis of polyaniline (PANI) is performed using potassium iodate (KIO3) as oxidizing agent in different concentrations of aqueous hydrochloric acid (HCl) at 8 and 93 W applied microwave power for duration of 10 min. The morphological and structural changes in synthesized MW PANI samples are investigated using Scanning Electron Microscopy (SEM) and Fourier transform Infrared Spectroscopy (FTIR). With decreasing pH of the reaction medium the morphology of MW PANI samples changed from slab-like with a small amount of fibrils to porous products which consist of short, rod-like structures. The FTIR spectra confirm that the microwave generated materials structurally consist of PANI, but aniline oligomer peaks are observed in the FTIR at 725 and 686 cm−1 for MW PANI synthesized using 0.5 M aqueous HCl. The influence of acid dopant on the spin concentration of MW PANI synthesized at 8 and 93 W are examined.  相似文献   

9.
Supported iron-based Fischer–Tropsch (FT) catalysts with high loading of active metal have been prepared using both traditional and innovative methods. In these latter the impregnation of silica support has been performed by adding a step involving an ultrasound (US) or a microwave (MW) treatment to improve the metal deposition and to increase the catalyst activity. FT results have indicated the catalysts prepared by US as the most efficient, particularly when sonication is performed in argon atmosphere. MW prepared samples have given results very similar to those obtained with the traditional method. In order to explain the different catalytic activity, all the samples have been characterized by BET, TPR, SEM, TEM, XRD and micro-Raman analyses.  相似文献   

10.
《X射线光谱测定》2003,32(5):387-395
Human dental calculi are biological calcium phosphates, which consist of an organic phase and an inorganic or mineral phase. In the latter phase, spectrochemical analyses have revealed the presence of several different magnesium and calcium phosphates. As the crystalline structure of the calculus passes through several stages during its allocation in the mouth, special attention is paid to some elements, such as zinc, that can modify the mineralization process. Several in vitro studies relating to the dental calculus mineralization process have been performed so far, but there is a lack of data obtained from biologically synthesized samples. The knowledge of the zinc distribution and incorporation in biological calcium phosphates is of great interest in providing more information about the biological process of calculus formation. In this paper we present surveys of the elemental distribution and incorporation of zinc in human dental calculus, by using a combination of different techniques: x‐ray microfluorescence using synchrotron radiation, scanning electron microscopy and x‐ray absorption spectroscopy. One‐dimensional x‐ray microfluorescence of zinc and magnesium measurement shows that there is a high accumulation of both elements in the sub‐gingival region of the calculus and a strong correlation of their spatial distribution. Experimental Ca/P molar ratios were determined by energy‐dispersive spectroscopy to identify different calcium phosphate phases, the sub‐gingival region being composed of a mixture of highly and poorly calcified phosphates and the supra‐gingival region composed mainly of carbonated hydroxyapatite. Finally, x‐ray absorption measurements were carried out at the zinc K edge on synthetic and biological samples. The Zn—O distance and coordination number of the synthetic samples and the supra‐gingival calculus show that zinc is adsorbed on these structures, whereas in the sub‐gingival samples it is allocated in a cation site. The results are indicative of the active participation of zinc in the calcification process of sub‐gingival calculus. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An idea of using pure iron and graphite electrodes was employed for synthesizing carbon nanoparticles by arc discharge in liquid nitrogen. The synthesized products consist of multiwalled carbon nanotubes (MW–CNT), carbon nanohorns (CNH), and carbon nanocapsules (CNC) with core–shell structure. Effect of metallic cathode and discharge current on product structure and yield had been experimentally investigated. Typical evidence of transmission electron microscopic images revealed that under some certain conditions of discharge in liquid nitrogen the synthesized products mainly consisted of CNCs with mean diameter of 50–400 nm. When conventional graphitic electrodes were employed, CNHs with some MW–CNTs were mainly synthesized. Meanwhile, MW–CNTs with diameter of 8–25 nm and length 150–250 nm became less selectively synthesized as cathode deposit under the condition of discharge in liquid nitrogen with higher arc current. The production yield of carbon nanoparticles synthesized by either carbon–carbon or carbon–iron electrodes became also lower with an increase in the arc current.  相似文献   

12.
The synthesized hydroxyapatite (HAp) and hydroxy-peroxy apatite are studied using various techniques, such as X-ray powder diffraction, FT-IR and Raman spectroscopy, scanning electron microscopy, and solid-state NMR spectroscopy. The experimental data suggest that hydroxy-peroxy apatite contains a small amount of hydration of partially dehydroxylated hydroxyapatite phase and calcium hydroxide. The incorporation of peroxide ions into the lattice of HAp causes perturbations of the hydrogen environments and slight changes in its crystal morphology. The distance between H in some structural OH and adjacent O along the c-axis becomes longer instead of forming a hydrogen bond after the incorporation of peroxide ions.  相似文献   

13.
Changes in the physical and mechanical properties of single crystals of n- and p-type silicon are investigated under the combined influence of a constant electric current and a magnetic field and an electric current separately. There is a slight increase in the resistivity of Si as pressure is applied. Increased resistance to compressive deformation is observed under the combined influence of a magnetic field and an electric cur- rent during compression, while increased plasticity is seen under the sole influence of an electric current for p-Si samples. There is an opposite effect for samples of n-Si. Increased plasticity is observed under the combined influence of a magnetic field and an electric current during compression, while increased strength is seen under the sole influence of an electric current. Surface microstructures of deformed samples are studied. A possible physical explanation for the observed phenomena is proposed.  相似文献   

14.
Apatite coating was applied on titanium surfaces modified by Nd:YVO4 laser ablations with different energy densities (fluency) at ambient pressure and atmosphere. The apatites were deposited by biomimetic method using a simulated body fluid solution that simulates the salt concentration of bodily fluids. The titanium surfaces submitted to the fast melting and solidification processes (ablation) were immersed in the simulated body fluid solution for four days. The samples were divided into two groups, one underwent heat treatment at 600 °C and the other dried at 37 °C. For the samples treated thermally the diffractograms showed the formation of a phase mixture, with the presence of the hydroxyapatite, tricalcium phosphate, calcium deficient hydroxyapatite, carbonated hydroxyapatite and octacalcium phosphate phases. For the samples dried only the formation of the octacalcium phosphate and hydroxyapatite phases was verified. The infrared spectra show bands relative to chemical bonds confirmed by the diffraction analyses. The coating of both the samples with and without heat treatment present dense morphology and made up of a clustering of spherical particles ranging from 5 to 20 μm. Based on the results we infer that the modification of implant surfaces employing laser ablations leads to the formation of oxides that help the formation of hydroxyapatite without the need of a heat treatment.  相似文献   

15.
The ultrastructure of biologically formed calcium carbonate crystals like the shell of Emiliania huxleyi depends on the environmental conditions such as pH value, temperature and salinity. Therefore, they can be used as indicator for climate changes. However, for this a detailed understanding of their crystal structure and chemical composition is required. High resolution methods like transmission electron microscopy can provide those information on the nanoscale, given that sufficiently thin samples can be prepared. In our study, we developed sample preparation techniques for cross-section and plan-view investigations and studied the sample stability under electron bombardment. In addition to the biological material (Emiliania huxleyi) we also prepared mineralogical samples (Iceland spar) for comparison. High resolution transmission electron microscopy imaging, electron diffraction and electron energy-loss spectroscopy studies revealed that all prepared samples are relatively stable under electron bombardment at an acceleration voltage of 300 kV when using a parallel illumination. Above an accumulated dose of ∼105 e/nm2 the material – independent whether its origin is biological or geological – transformed to poly-crystalline calcium oxide.  相似文献   

16.
In this article, calcium nitrate (Ca(NO3)2) and disodium hydrogen phosphate (Na2HPO4) are used as calcium and phosphorous sources to prepare hydroxyapatite nanoparticles by the hydrothermal method. Plate-like nanocrystals of hydroxyapatite are synthesized with the aid of sodium tripolyphosphate. The results show that sodium tripolyphosphate increases the diameters of the hydroxyapatite nanoparticles during the hydrothermal process. When the concentration of sodium tripolyphosphate reaches 0.015 M, the average aspect ratio of those nanoparticles is close to 1. The strong surface adsorption caused by sodium tripolyphosphate may answer for the morphological change of hydroxyapatite crystal.  相似文献   

17.
Historically, improvements in radiotherapy have been mainly due to improvements in physical selectivity: beam penetration, collimation, dosimetry, treatment planning; and advances in imaging. Neutrons were the first high-LET (linear energy transfer) radiation to be used clinically and showed improvement in the differential response of radiation resistant tumors and normal tissues. The benefits of fast neutrons (and other forms of high LET radiations) are due to their biological effects: a reduction of the OER, a reduction in the differential cell radiosensitivity related to their position in the mitotic cycle, and a reduction in cellular repair capacity (thus less importance of fractionation). The poor physical selectivity of the early neutron therapy beams introduced a systematic bias in comparison with the photon treatments and created a negative perception for neutron therapy. However, significant improvements in the neutron therapy equipment resulted in a physical selectivity similar to modern MV photon therapy.The tumor types or sites where the best therapeutic results were obtained included inoperable or recurrent salivary gland tumors locally extended prostatic adenocarcinomas, and slowly growing well-differentiated sarcomas. The benefit of neutrons for some other well-defined groups of patients was demonstrated in randomized trials. It was estimated that about 20 % of all radiotherapy patients could benefit from fast neutrons (if neutrons are delivered under satisfactory physical conditions). An important issue for fast neutron therapy is the selection of the types of patients who could most benefit from high-LET radiations. The same issue is raised today with other high-LET radiations (e.g., 12C ions). It is reasonable to assume that the same types of patients would benefit from 12C irradiation. Of course the better physical selectivity of ion beams enhances the treatment possibilities but this is true for both the high-LET and low-LET radiations (i.e., moving from neutrons to 12C ions and from photons to protons, respectively). An important area of research involves developing criteria to identify specific patients suitable for high-LET radiation. One promising technique is to measure the RBE of the cancer cell population in vitro mainly in head and neck tumors. Modern molecular imaging allows the identification of hypoxic or proliferative regions in the tumor. Special MRI examinations are also able to identify hypoxic regions. A promising predictive test recently initiated, is the study of non-repairable double strand breaks but the utility of the technique needs to be confirmed. The extensive experience with fast neutron therapy can greatly assist the transition to high-LET charged-particle therapy.  相似文献   

18.
We studied the influence of porous Al2O3 substrates on Ce-stabilized ZrO2-doped hydroxyapatite thin films morphology pulsed laser deposited on their top. The porosities of substrates were monitored by changing sintering temperatures and measured with a high pressure Hg porosimeter.The depositions were conducted in 50 Pa water vapors by multipulse ablation of the targets with an UV KrF* (λ = 248 nm, τ ∼ 25 ns) excimer laser. The surface morphology of synthesized nanostructures was investigated by scanning electron microscopy and atomic force microcopy. Ca/P ratio within the range 1.67-1.70 was found for hydroxyapatite coatings by energy dispersive spectroscopy.The films were further seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spreading uniformly covering the entire surface of samples. The complexity of film morphology which is increasing with substrate porosity was shown to have a positive influence on cultivated cells density.  相似文献   

19.
ZnO, ZnO:Cu and ZnO:Cu:Graphene nanopowders were synthesized via a facile wet chemical method. The XRD studies show that the synthesized samples have hexagonal wurtzite structure. It is found that graphene addition induces a decrease in crystallite size. UV–vis absorption spectra of the samples show sharp absorption edges around 380 nm. Photoluminescence studies reveal that the incorporation of copper and graphene in ZnO facilitates the efficient photo generated electron–hole pair separation. It is found that the ZnO:Cu and ZnO:Cu:Graphene nanopowder exhibit improved photocatalytic efficiency for the photodegradation of Methylene Blue (MB) under visible light irradiation. Moreover, improved antibacterial activity of ZnO:Cu:Graphene nanopowder against Escherichia coli and Staphylococcus aureus bacteria is observed.  相似文献   

20.
Luminescence characteristics of an analogue of the mineral component of dental enamel—nanocrystalline B-type carbonate-substituted calcium hydroxyapatite (CHAP)—with defects (nanopores ~2?5 nm in size) on the surface of nanocrystals are studied. It is shown that laser-induced luminescence of CHAP samples synthesized by us occurs in the region of ~515 nm (~2.4 eV) and is related to the existence of CO3 groups substituting PO4 groups in the CHAP lattice. It is determined that the luminescence intensity of the CHAP samples depends on the amount of structurally bound CO3 groups and decreases with decreasing concentration of these intracenter defects in the apatite structure. The results obtained in this work are of potential importance for developing the fundamentals of precision and early detection of caries in human hard dental tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号