首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gold nanoparticles (AuNPs)–polyvinylpyrrolidone (PVP)–graphene (Gr) nanohybrids were prepared by a facile one-pot green strategy. The obtained Au–PVP–Gr composites were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Then, a novel electrochemical sensor for highly sensitive and selective detection of tert-butylhydroquinone (TBHQ) is proposed based on cetyltrimethyl-ammonium bromide (CTAB) and Au–PVP–Gr modified glassy carbon electrode (GCE). Due to the synergistic effect of CTAB and Au–PVP–Gr, the developed sensor displays a wide linear range from 0.02 to 0.1 and 0.1 to 100.0 μM. A low detection limit of 0.009 μM was observed. Further, the sensitivity and selectivity of PVP–CTAB/Au–PVP–Gr/GCE was demonstrated by its practical application in the determination of TBHQ in real samples.  相似文献   

2.
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01–68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm−2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn’t cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.  相似文献   

3.
Thermo-responsive polymer nanocomposite based on poly (styrene-co-N-isopropylacrylamide) hybrid tungsten dioxide (WO2@PS-co-PNIPAM) was synthesized by a facile ultrasonic irradiation (Frequency; 20 kHz, power; 180 W, calorimetrically determined power; 5.73 W in the bath, and Type; probe) method in the presence of water as inisolv. The as-synthesized WO2@PS-co-PNIPAM modified glassy carbon electrode (WO2@PS-co-PNIPAM/GCE) was acting as a reversibly switched detection for the electrooxidation of metoprolol (MTP), with the thermal stimuli response of the PNIPAM. In below lower critical solution temperature (LCST), the PS-co-PNIPAM expanded to embed the electroactive sites of WO2, and the MTP could not proceed via the polymer to attain electronic transfer, indicating the “off” state. Rather, in above LCST, the PS-co-PNIPAM shrank to reveal electroactive sites and expand cyclic voltammetric background peak currents, the MTP was capable to undergo electro-oxidation reaction usually and produce the response current, indicating “on” state. Additionally, the proposed sensor had excellent sensitivity (2.21 µA µM−1 cm−2), wide dynamic range (0.05–306 µM), and a low limit of detection of 0.03 µM for MTP. Intriguingly, the fabricated sensor demonstrates the good selectivity towards the detection of MTP among the possible interfering compounds. Eventually, the WO2@PS-co-PNIPAM/GCE has been utilized in the analysis of MTP in human blood serum samples.  相似文献   

4.
In the present work, we report on the synthesis of crump-like nickel manganous oxide nanoparticles decorated partially reduced graphene oxide (NiMnO@pr-GO) nanocomposite through high-intensity ultrasonic bath sonication (ultrasonic frequency = 37 kHz and power = 150 W). The NiMnO@pr-GO nanocomposite modified glassy carbon electrode (GCE) was then employed for the electrochemical reduction of detrimental metronidazole (MNZ). The crystalline phase and formation of the NiMnO@pr-GO nanocomposites were confirmed by X-ray diffraction and other spectroscopic techniques. The cyclic voltammetry results demonstrate that this NiMnO@pr-GO nanocomposite modified GCE has a lower reduction potential and higher catalytic activity towards MNZ than do NiMnO and GO modified GCEs. Under optimized conditions, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm−2 and was found to have excellent selectivity and durability for the detection of MNZ.  相似文献   

5.
The ultrasound-assisted synthesis of a novel neodymium sesquioxide nanoparticles (Nd2O5 NPs) decorated graphene oxide (GO) nanocomposite under ultrasonic probe (Ultrasonic processor model-PR 1000; frequency-30 kHz; power of 100 W/cm2) has been reported. After then, SEM, TEM, XRD, EDX and electrochemical impedance spectroscopy characterized was analyzed using Nd2O5 NPs@GO nanomaterial. Furthermore, the nanomaterial modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards anti-cancer drug. Raloxifene is one of the important anti-cancer drug. Moreover, the fabricated electrochemical sensor has showed a wide linear range for raloxifene between 0.03 and 472.5 µM and nanomolar detection limit (18.43 nM). In addition, the Nd2O5 NPs@GO modified sensor has been applied to the determination of raloxifene in human blood and urine samples.  相似文献   

6.
Ultrasonication is one of the emerging probes for nanoparticles synthesis as well as promoting the material property by treasuring the precious time during a chemical reaction. In this present work, we successfully designed a cloud-like α-ZnMoO4 nanospheres (ZMNS) using ultrasound assistance (bath sonication with the power of 60 W and frequency of 37/80 kHz) hydrothermal method for catalyzing the effective electrochemical determination of anti-androgen drug candidate flutamide (FLT). The crystallinity and phase purity were investigated using powder X-ray diffractometric analysis. The FTIR and Raman spectra information were compared to detect the possible bonding in ZMNS. The texture and surface morphology were studied using Field emission scanning electron microscope and High-resolution Transmission electron microscope images. The presence of the elements (Zn, Mo and O) and the absence of any other impurities were monitored and confirmed using EDAX analysis. The fabrication of ZMNS modified GCE was performed carefully. Additionally, the ZMNS modified glassy carbon electrode (GCE) exhibits superior electrocatalytic activity by means of higher cathodic peak current towards the detection of FLT. The fashioned electrode attained two wide linear response ranges (0.1 to 73 µM; 111 to 1026 µM) with a lower detection limit of about 33 nM correspondingly. Furthermore, the fabricated sensor displayed excellent sensitivity of 1.095 µA µM−1 cm−2 and good selectivity for FLT sensing even in the existence of similar interfering compounds and biomolecules. Along with that, the designed sensor executed noticeable reproducibility, repeatability, and enduring stability.  相似文献   

7.
Lu Liu  Hao Cui  Hao An  Jianping Zhai  Yang Pan 《Ionics》2017,23(6):1517-1523
Nitrite is a common contaminant in drinking water and groundwater with high environmental and health risks. Electrochemical sensing method is a selective and easy technique to detect nitrite in water. In this study, we report a research about a poly(aniline-co-o-aminophenol)-modified glassy carbon electrode (PAOA/GCE) for aqueous nitrite detection. With stable redox activity and conductivity in a wide pH range compared with polyaniline, PAOA is suitable to be used as electrode material in a neutral medium. The PAOA/GCE was prepared by cyclic voltammogram method by electrochemical copolymerization of o-aminophenol and aniline. SEM and FT-IR results proved the formation of PAOA, and the electrode exhibited higher responses toward nitrite oxidation compared with polyaniline-modified GCE and bare GCE. We also studied the impact of scan rate, pH, and temperature on nitrite detection. The PAOA/GCE could be used in a wide pH range from 2 to 8 and used to detect nitrite in the linear range from 5.0 × 10?6 to 2.0 × 10?3 M with the detection limit of 2 × 10?6 M. Its excellent reproducibility, stability, and anti-interference ability make it a promising electrode in detecting aqueous nitrite in drinking water and groundwater.  相似文献   

8.
设计了一种氧化石墨烯(GO)功能化的倾斜光纤光栅(TFBG)传感器,用于检测水溶液中的重金属离子.通过氧等离子体活化光纤表面,以及采用GO的无水乙醇分散液,避免了咖啡环效应引起的GO的团聚和堆叠,充分了暴露GO的表面和羧基.吸附重金属离子后, GO-TFBG传感器的透射光谱中的谐振峰发生红移,这是由GO向重金属离子的电子转移导致的有效折射率变化造成的.对Pb2+和Cd2+离子最低检测限可达到10–10 mol/L (ng/L量级),相应灵敏度分别为0.426 d B/(nmol·L–1)和0.385 d B/(nmol·L–1)(2.06和3.43 d B/(μg·L–1)).此外, GO-TFBG传感器具有出色的器件一致性, 5组传感器的传感性能稳定.本研究实现了GO纳米片在光纤表面的无团聚和均匀成膜,获得了具有超大表面积的GO并充分暴露表面羧基实现对重金属离子的吸附,利用了TFBG不同模式谐振对环境的高度敏感性,完成了对低浓度重金属离子的高灵敏度、可重...  相似文献   

9.
In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005–982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM−1 cm−2 with excellent precision and accuracy towards the sensing of nitrofurantoin.  相似文献   

10.
Shu  Yun  Dai  Tao  Ye  Qiuyu  Jin  Dangqin  Xu  Qin  Hu  Xiaoya 《Journal of fluorescence》2021,31(6):1947-1957

Using two-dimensional (2D) nickel-based metal organic framework (Ni-MOF) nanosheets as a matrix, Eu3+ and Ag+ were incorporated to synthesize Ag/Eu@Ni-MOF with double luminescence centers of Eu3+ ion (615 nm) and organic ligand (524 nm). And a ratiometric luminescence sensor is constructed based on Ag/Eu@Ni-MOF for sensitive detection of biothiols in aqueous solutions. The dual-emissive fluorescence properties can be tuned by changing the amounts of Ag+ ions doping. The results of temperature and pH effects on the fluorescence of Ag/Eu@Ni-MOF indicates that the Ag/Eu@Ni-MOF is a temperature-sensitive material and the fluorescence of Ag/Eu@Ni-MOF can keep stable over a wide pH range. Due to the binding of -SH in cysteine (Cys) and glutathione (GSH) with Ag+, the ligand luminescence was significantly inhibited by weakening the Ag?+?influence on the energy transfer process in the MOFs. Therefore, ratiometric fluorescent sensing of biomolecular thiols was realized based on the dual-emission Ag/Eu@Ni-MOF. More importantly, the fluorescence color change can be observed with naked eyes to realize visual detection. The ratiometric fluorescent sensor exhibits high performance for Cys and GSH detection with a wide linear range of 5-250 µM and a relatively low detection limit of 0.20 µM and 0.17 µM, respectively. Furthermore, the biothiols content in human serum was determined with satisfactory results. It proves the Ni-MOF nanosheets can be used as a stable matrix for construction luminescent MOFs for the first time, and validate the great potential of Ag/Eu@Ni-MOF as a ratiometric fluorescent probe for point-of-care testing (POCT) in disease diagnosis.

  相似文献   

11.
Herein, we report a one-pot synthesis of structurally uniform and electrochemically active graphitic carbon nitride/nickel oxide (g-C3N4/NiO) nanocomposite and an investigation on the electrocatalytic oxidation of quercetin (QR). The synthesized g-C3N4/NiO nanocomposite has uniform surface distribution, which was characterized with scanning electron microscopy (SEM). Moreover, the composition of synthesized g-C3N4/NiO nanocomposite was characterized by UV–vis-spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR spectra), BET, SEM and HRTEM. The g-C3N4/NiO was electrochemically treated in 0.1 MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with QR concentration from 0.010 μM to 250 µM with a fast response time of less than 2 s and a detection limit of 0.002 μM. To further evaluate the feasibility of using this sensor for real sample analysis, QR content in various real samples including green tea, green apple, honey suckle were determined and satisfactory results were achieved.  相似文献   

12.
In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.  相似文献   

13.
A novel sensitive electrochemical sensor has been developed by modification of glassy carbon electrode (GCE) with graphene (GRP), chitosan (CHIT), and bismuth oxide (Bi2O3) nanoparticles. The morphological characteristics of nanocomposite (GRP-CHIT-Bi2O3 or GCB) were studied by scanning electron microscope and atomic force microscopy. The electrochemical behavior of epinephrine at nanocomposite modified GCE (GCB/GCE) was investigated in pH 7.4 phosphate buffer solution using cyclic voltammetry and square wave voltammetry. GCB/GCE showed an enhancement in the current response as compared to bare GCE. Electrochemical impedance spectra showed a reduction of charge transfer resistance and higher electrocatalytic behavior of the sensor. The electrooxidation process of epinephrine at the modified sensor was found to be diffusion controlled. GCB/GCE showed a linear response to epinephrine in the range 100 to 500 nM. The limit of detection and limit of quantification were found to be 3.56 and 11.85 nM, respectively, which is lower than many other sensors reported for epinephrine in literature. The modified sensor showed high sensitivity (1.3 nA/nM) and selectivity for epinephrine. The method was employed for quantification of epinephrine in pharmaceutical formulation and human blood serum samples.  相似文献   

14.
We developed a new spectrofluorometric method for qualitative and quantitative determination of cyanide in water using the incorporation of naphthoquinone imidazole boronic-based sensors (m -NQB and p -NQB) and a cationic surfactant, certyltrimethyl ammonium bromide (CTAB). This micellar system exhibited great selectivity for cyanide detection with an assistance of the cationic surface of micelle. The interaction of boronic acid of the sensor toward cyanide in CTAB micellar media gave a quantitative measure of cyanide concentration in the micromolar level. Under the optimal condition, fluorescence intensity at 460 nm of m -NQB and p -NQB provided two sets of linear ranges, 0.5–15 μM and 20–40 μM and the limit of cyanide detection of 1.4 μM. Hence, both sensors in CTAB aqueous micellar system offered a considerably promising cyanide detection with 1000–fold enhancement of the detection limit compared to those studied in DMSO: H2O. The proposed sensors could also be used to determine cyanide in water with good analytical characteristics.  相似文献   

15.
Herein, we have synthesized zinc sulfide nanospheres (ZnS NPs) encapsulated on reduced graphene oxide (RGO) hybrid by an ultrasonic bath (50 kHz/60 W). The physical and structural properties of ZnS NPs@RGO hybrid were analyzed by TEM, XRD, EIS and EDS. As-prepared ZnS NPs@RGO hybrid was applied towards the electrochemical determination of caffeic acid (CA) in various food samples. The ZnS NPs@RGO hybrid modified electrode (GCE) exhibited an excellent electrocatalytic performance towards caffeic acid detection and determination, when compared to other modified electrodes. Therefore, the electrochemical sensing performance of the fabricated and nanocomposite modified electrode was significantly improved owing to the synergistic effect of ZnS NPs and RGO catalyst. Furthermore, the hybrid materials provide highly active electro-sites as well as rapid electron transport pathways. The proposed electrochemical caffeic acid sensor produces a wide linear range of 0.015–671.7 µM with a nanomolar level detection limit (3.29 nM). In addition, the real sample analysis of the proposed sensor has applied to the determination of caffeic acid in various food samples.  相似文献   

16.
This paper describes a highly efficient and rapid approach of synthesizing different CuO nanostructures in aqueous solutions using ultrasound irradiation of copper(II) acetate with urea/sodium hydroxide in the presence of polyvinylpyrrolidone (PVP), as stabilizing polymer. Field emission scanning electron microscope images clearly indicate the formation of CuO quasi-spherical microarchitectures and long-straw like structure in the presence of urea and sodium hydroxide. Other characterization techniques such as TEM, XRD and XPS are also provided to support the formation of such structures. One of the reasons for the formation of such CuO nanostructures may be due to the formation of a polymer-metal complex with the stabilizing polymer (PVP).  相似文献   

17.
A nanostructured composite film comprising reduced graphene oxide (rGO) and nickel oxide (NiO) nanoparticles (NPs) has been prepared and utilized for development of a simple yet efficient sensor for detection of dopamine and epinephrine in a single run. The hybrid material rGO-NiO nanocomposite was synthesized chemically, and the formation of nanocomposite was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman, UV-Vis, and Fourier transform infrared (FTIR) spectroscopic techniques. The incorporation of NiO NPs on rGO support was found to provide improved sensing characteristics at electrode interface due to enhanced electron mobility on rGO sheet and high catalytic activity of NiO NPs. Subsequently, the synthesized rGO-NiO nanocomposite was deposited onto indium tin oxide (ITO)-coated glass substrate by simple drop-casting method, and the electrode was characterized through atomic force microscopy (AFM) and scanning electron microscopic (SEM) studies. After optimization of experimental conditions electrochemically for its high sensitivity, the fabricated rGO-NiO/ITO electrode was used for simultaneous detection of dopamine and epinephrine by square wave voltammetry (SWV) method. The results showed high sensitivity of 0.545 and 0.638 μA/μM for dopamine and epinephrine respectively in a broad linear range of 0.5–50 μM. Moreover, remarkable detection limits of 0.495 and 0.423 μM were found for dopamine and epinephrine, and the developed sensor exhibited a wide separation of 380 mV between the respective detection peaks of dopamine and epinephrine. Beside this, the proposed sensor was successfully applied in presence of high concentration of interfering agents, ascorbic acid and uric acid, and validated with real serum samples.  相似文献   

18.

The present study aimed to develop a carbon dots-based fluorescence (FL) sensor that can detect more than one pollutant simultaneously in the same aqueous solution. The carbon dots-based FL sensor has been prepared by employing a facile hydrothermal method using citric acid and ethylenediamine as precursors. The as-synthesized CDs displayed excellent hydrophilicity, good photostability and blue fluorescence under UV light. They have been used as an efficient “turn-off” FL sensor for dual sensing of Fe3+ and Hg2+ ions in an aqueous medium with high sensitivity and selectivity through a static quenching mechanism. The lowest limit of detection (LOD) for Fe3+ and Hg2+ ions was found to be 0.406 µM and 0.934 µM, respectively over the concentration range of 0-50 µM. Therefore, the present work provides an effective strategy to monitor the concentration of Fe3+ and Hg2+ ions simultaneously in an aqueous medium using environment-friendly CDs.

Graphical Abstract
  相似文献   

19.
In this reports the facile and green synthesis of rutile-type titanium dioxide nanoparticles decorated graphene oxide nanocomposite via the ultrasonication process (frequency: 50 kHz, Power: 100 W/cm2 and Ultrasonic type: Ti-horn). Because, the sonochemical synthesis method is simple, non-explosive and harmless method than other conventional technique. Furthermore, the synthesized material was characterized by various analytical techniques including FESEM, EDX, XRD, EIS and electrochemical methods. Then, the synthesized TiO2 MPs@GOS composite was applied for the electrocatalytic detection of theophylline (TPL) using CV and amperometric (current-time) techniques. Captivatingly, the modified sensor has excellent electrocatalytic performance with the wider linear range from 0.02 to 209.6 µM towards the determination of theophylline and the LOD and sensitivity of the modified sensor was calculated as 13.26 nM and 1.183 μA·µM−1·cm−2, respectively. In addition, a selectivity, reproducibility and stability of the TiO2 MPs@GOS modified GCE were analyzed towards the determination of theophylline molecule. Finally, the real time application of TiO2 MPs@GOS modified theophylline sensor was established in serum and drug samples.  相似文献   

20.
A novel and convenient electrochemical sensor, based on multi-walled carbon nanotube (MWCNT)–poly-melamine(PMel)–silver nanoparticle (AgNP) composite-modified glassy carbon electrode (GCE), was fabricated for the determination of nitrobenzene (NB). The modified electrode not only played an efficient electrocatalytic role for the reduction of NB but also significantly reduced the overpotential of NB, and the peak current increased greatly compared with bare GCE or other modified electrodes. The excellent performance of NB sensor can be ascribed to the synergistic effect between MWCNT and AgNP. The synergistic effect promoted the electron transfer between MWCNT and AgNP significantly and enhanced the electrochemical reduction ability of NB remarkably. Besides, PMel has huge nitrogen and amine groups, which contributes to the dispersion of silver nanoparticles and also improves the electrocatalytic activity and sensitivity of the sensor. The integration of PMel/MWCNT with AgNP provided a high-performance platform for the NB determination. Under the optimized experimental conditions, the developed sensor showed a wide linear calibration ranges from 20 to 1000 μM and from 1000 to 6000 μM, with a low detection limit (0.55 μM) for the detection of NB. At the same time, the modified electrode exhibited good stability and reproducibility and acceptable selectivity. Moreover, the proposed sensors were successfully employed to determine NB in real samples, and the recoveries were between 97.2 and 104.6 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号